首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数。而这里正好就对应了这种情况。我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在左上角,所以1入栈,这时候我们放2,如果我们把2放在了1的下面就代表了1出栈,把2放在上面就代表了2也进栈(可以看一下hint中第二组样例提示),以此类推,这样去放数,正好就对应了上面一行入栈,下面一行出栈的情况,一共n行,对应上限为n的卡特兰数。

  需要注意的地方就是在使用卡特兰数递推式的时候,除法是不遵循同余膜定理的,所以需要用到乘法逆元,设我们要除的数为n,取的膜为mod,那么n的乘法逆元就是,当n与mod互质的时候,通过欧几里得定理n*x + y*mod = gcd(n,m)得到x,将x处理为(x%mod + mod)% mod的形式,就是我们要的乘法逆元。

  代码如下:

  

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1000010
#define mod 1000000007
#define LL long long
LL ktl[maxn],x,y;
LL exgcd(LL a,LL b)
{
if(b == )
{
x = ;
y = ;
return a;
}
LL gcd = exgcd(b,a%b);
LL tmp;
tmp = x;
x = y;
y = tmp - a/b * y;
return gcd;
}
LL yiyuan(int n)
{
LL gcd = exgcd(n,mod);
if(gcd == )
return (x%mod + mod) % mod;
}
void init()
{
memset(ktl,,sizeof(ktl));
ktl[] = ;
for(int i = ; i <= maxn-; i++)
{
ktl[i] = (ktl[i-]*(*i-)%mod * yiyuan(i+)) % mod;
}
}
int main()
{
int t,n,ca = ;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Case #%d:\n",++ca);
printf("%I64d\n",ktl[n]);
}
return ;
}

HDU 4828 Grids(卡特兰数+乘法逆元)的更多相关文章

  1. hdu 4828 Grids 卡特兰数+逆元

    Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Problem D ...

  2. HDU 4828 - Grids (Catalan数)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...

  3. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

  4. hdu 4828 Grids(拓展欧几里得+卡特兰数)

    题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...

  5. 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)

    题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...

  6. hdu 5184 类卡特兰数+逆元

    BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...

  7. hdu 5673 Robot 卡特兰数+逆元

    Robot Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  8. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  9. hdu 5184(数学-卡特兰数)

    Brackets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

随机推荐

  1. LeetCode OJ 85. Maximal Rectangle

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and ...

  2. 判断手机电脑微信 js

    if ((navigator.userAgent.match(/(MicroMessenger)/i))) { //微信浏览器 //location.href=""; } else ...

  3. robotium和appium的一些区别

    Appium是基于UIAutomator框架实现的.Appium测试进程与目标应用进程是分开的,所以Appium不能直接访问目标应用的各种element属性进行copy&paste,而只能模拟 ...

  4. AS3.0杂记——Dictionary、Object与Array

    来源:http://blog.csdn.net/m_leonwang/article/details/8811829 Object.Array与Dictionary都是关联数组,就是用“键”来索引存储 ...

  5. POJ 3279 Fliptile[二进制状压DP]

    题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...

  6. 牛顿迭代法解指数方程(aX + e^x解 = b )

    高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解, ...

  7. java 常用的三大集合类

    一.Set集合.其主要实现类有HashSet.TreeSet.存放对象的引用,不允许有重复对象. 代码: public class SetTest { public static void main( ...

  8. C语言_用if```else语句解决奖金发放问题

    #include<stdio.h> #include<stdlib.h> /*企业发放的奖金根据利润提成,发放规则如下: 利润(I)低于或等于10万元时,奖金可提10%: 利润 ...

  9. DLL and LIB

    在StackOverflow中看到一个提问“what's the difference between DLL's and LIB's?” 有如下回复值得参考: 回复一:

  10. what a malloc has to do

    1) Allocate a chunk of memory big enough to satisfy the request, and return a pointer to it.2) Remem ...