LINK:Multiple Testcases

得到很多种做法。其中O(n)的做法值得一提。

容易想到二分答案 check的时候发现不太清楚分配的策略。

需要先考虑如何分配 容易发现大的东西会对小的产生影响 而 对于某个能放的位置 我们放大的一定比小的要优。所以为了防止出现对小的影响到了需要调整的局面和放大的的局面不会比放小的差的思想 可以得到策略。

有了贪心的思路 可以考虑先放大的 考虑对于每个桶中从大到小放。

放完一个数字之和容易二分到下一个位置 然后set取出相应的值即可。复杂度nlogn.

容易发现其实不需要二分 预处理一下跳跃数组即可。

这个做法有另外的形式 sort一下从大到小放 然后发现位置不够用的时候再开一个 用堆或者set维护能用的位置。复杂度还是nlogn.

接下来考虑二分答案的思路。

一个比较不容易想到是正确的分配思路 二分答案之后 如果答案合法那么按照 1...mid ->1,,,mid放一定可以合法。

换句话说 答案满足这样构造的情况。设\(a_i\)为每个数字的个数\(g_i=\sum{w=i}^ka_w\)\(c_i\)表示限制

证明:如果mid>=ans 那么必然满足 \(mid\geq max{\lceil \frac{g_i}{c_i}\rceil}\)

这个结论是显然的。而这样构造可以发现对于某个i和其之后的数字来说算是平均分配了给了mid.

而这样平均分又有上述的关系作为保证 所以构造合法。

至此 进一步的 可以发现答案直接为上述式子的最大值即可。复杂度O(n)

code nlogn的set:

const ll MAXN=200010;
ll n,m,ans;
int c[MAXN],vis[MAXN];
vector<int>g[MAXN];
multiset<int>s;
multiset<int>:: iterator it;
signed main()
{
//freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)
{
int get(x);
s.insert(x);
}
c[0]=INF;
rep(1,m,i)get(c[i]),c[i]=min(c[i-1],c[i]);
int cnt=0;
while(cnt<n)
{
++ans;
it=s.end();--it;
int R=*it;
int ww=0;
while(1)
{
++ww;++cnt;
g[ans].pb(R);
if(cnt==n)break;
s.erase(it);
int l=0,r=R;
while(l+1<r)
{
int mid=(l+r)>>1;
if(c[mid]>ww)l=mid;
else r=mid;
}
int cc=c[r]>ww?r:l;
R=cc;
if(!R)break;
it=s.upper_bound(R);
if(it==s.begin())break;
--it;R=*it;
}
}
put(ans);
rep(1,ans,i)
{
printf("%d ",g[i].size());
for(ui j=0;j<g[i].size();++j)printf("%d ",g[i][j]);
puts("");
}
return 0;
}

O(n)的构造

const int MAXN=200010;
int n,m,ans;
int c[MAXN],w[MAXN],a[MAXN];
vector<int>g[MAXN];
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)++a[read()];
rep(1,m,i)get(c[i]);
fep(m,1,i)w[i]=a[i]+w[i+1],ans=max(ans,(w[i]-1)/c[i]+1);
int cnt=0;
rep(1,m,i)while(a[i])g[cnt].pb(i),cnt=(cnt+1)==ans?0:cnt+1,--a[i];
put(ans);
rep(0,ans-1,i)
{
printf("%d ",g[i].size());
for(ui j=0;j<g[i].size();++j)printf("%d ",g[i][j]);
puts("");
}
return 0;
}

EC R 86 D Multiple Testcases 构造 贪心 二分的更多相关文章

  1. Codeforces Round #768 (Div. 2) D. Range and Partition // 思维 + 贪心 + 二分查找

    The link to problem:Problem - D - Codeforces   D. Range and Partition  time limit per test: 2 second ...

  2. The 14th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple - F 贪心+二分

    Heap Partition Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge A sequence S = { ...

  3. 贪心/二分查找 BestCoder Round #43 1002 pog loves szh II

    题目传送门 /* 贪心/二分查找:首先对ai%=p,然后sort,这样的话就有序能使用二分查找.贪心的思想是每次找到一个aj使得和为p-1(如果有的话) 当然有可能两个数和超过p,那么an的值最优,每 ...

  4. poj 2782 Bin Packing (贪心+二分)

    F - 贪心+ 二分 Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   Description ...

  5. Card Game Cheater(贪心+二分匹配)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. Codeforces Round #301 (Div. 2) B. School Marks 构造/贪心

    B. School Marks Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/540/probl ...

  7. LA 6979 Known Notation 构造+贪心 铜牌题

    题意:给出一个字符串,有两种操作: 1.插入一个数字  2.交换两个字符   问最少多少步可以把该字符串变为一个后缀表达式(操作符只有*) #include <cstdio> #inclu ...

  8. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  9. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

随机推荐

  1. 如何将less编译成css文件__less自动编译成css的方法总结

    作为css的预处理less,拥有着比css更快捷方便,扩展了css的变量.Mixin.函数等特性,使 CSS 更易维护和扩展.  如何你已经回使用css,那么less就很容易上手了.如果不使用less ...

  2. Python Java 快速配置环境变量(Path)

    Python Java 快速配置环境变量(Path) 最近系统被重置,清空了C盘中的program等文件夹以及初始化了环境变量. 通常环境下,在windows环境中我们都会打开"环境变量&q ...

  3. 面试必杀技,讲一讲Spring中的循环依赖

    本系列文章: 听说你还没学Spring就被源码编译劝退了?30+张图带你玩转Spring编译 读源码,我们可以从第一行读起 你知道Spring是怎么解析配置类的吗? 配置类为什么要添加@Configu ...

  4. Python语法的使用和简介

    前言 Python的语法和其它编程语言的语法有所不同,编写Paython程序之前需要对语法有所了解,才能编写规范的Python程序. 输入输出 print() # 打印显示input() # 输入内容 ...

  5. day52 html进阶

    目录 一.分组与嵌套 二.伪类选择器 三.伪元素选择器 四.选择器优先级 五.css属性相关 1 字体属性 2 文字属性 3 背景图片 4 边框 5 display属性 6 盒子模型 7 浮动 一.分 ...

  6. 数据可视化之powerBI入门(五)PowerQuery,支持从多种源导入数据

    PowerBI的强大绝不仅是最后生成炫酷的可视化报告,她在第一步数据获取上就显示出了强大的威力,利用Power Query 的强大数据处理功能,几乎可以从任何来源.任何结构.任何形式上获取数据 htt ...

  7. 数据可视化之powerBI基础(三)编辑交互,体验更灵活的PowerBI可视化

    https://zhuanlan.zhihu.com/p/64412190 PowerBI可视化与传统图表的一大区别,就是可视化分析是动态的,通过页面上筛选.钻取.突出显示等交互功能,可以快速进行访问 ...

  8. 目录(Django开发)

    python网络编程-socket编程 Django 笔记分享 Django之[基础篇] Django之[进阶篇] Django之 url组件 Django之 Models组件 Django之 adm ...

  9. 安卓移动端line-height垂直居中出现偏移的解决方法

    目前移动端在项目使用的rem,安卓手机上line-height属性,让它的值等于height,结果发现是不居中的. 出现此问题的原因是Android在排版计算的时候参考了primyfont字体的相关属 ...

  10. .net core微服务——gRPC(下)

    序 上一篇博客把grpc的概念说了个大概,介绍了proto的数据类型,基本语法,也写了个小demo,是不是没那么难? 今天要从理论到实际,写两个微服务,并利用grpc完成两者之间的通信.只是作为dem ...