Operation

题解:看到区间最大异或和,首先想到的是线性基;

线性基可以处理的操作是:

  • 在数列末尾插入一个数
  • 查询全局的子集异或最大值

由于线性基的长度很短,因此我们可以将数列所有前缀的线性基保存下来。1到x的线性基可以由1到x-1的线性基通过插入a[x]来求得,这样,我们就可以查询前缀区间的子集异或最大值。现在问题的关键在于,查询区间 [L, R] 时,如何避免 [1, L-1] 的干扰。

考虑线性基的插入过程,如果线性基当前位上已经有值,我们就不能把待插入的值放入这一位,因此线性基上每一位的数,都是对应位上在原数列最左侧的数字。现在我们改变策略,使得线性基上每一位的数,都变成对应位上在原数列最右侧的数字。实现这个策略的方法是:我们额外保存线性基上每一位数在原数列中的位置,插入的时候,如果对应位上的数在原数列中更靠左,就用待插入的数和它交换。基于这种策略,我们在查询区间 [L, R] 时,可以在区间 [1, R] 对应的线性基中查询,对于线性基上每一位的数,如果它在原数组中出现的位置比 L 更靠右,就考虑它对答案的贡献,否则直接跳过这一位。

这个做法的正确性也很显然,通过改变策略,使线性基上每一位数变成对应位上在原数列最右侧的数字,可以看成线性基插入数字的顺序变反,完全不影响线性基的性质。同时,将线性基上所有在原数组中的位置比 x 更靠左的数字删除,可以视为区间 [1, L-1] 的数字还没有被插入线性基。

复杂度:O((n + m) logx),n为初始数列长度,m为操作次数,x为值域大小。

大佬的博客讲解:here

AC_Code:

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
typedef long long ll;
#define endl '\n'
const int maxn = ;
const int maxm = 5e5+;
const int inf = 0x3f3f3f3f; int cnt;//当前已插入的数的个数
int a[maxm][maxn];//保存所有前缀区间的线性基
int b[maxm][maxn];//保存线性基上的数字在原数组上的对应位置
int n,m; void LB(int x){
int cur=++cnt;//表示待插入的数字在原数组上的位置
for(int i=;i>=;i--){
a[cnt][i]=a[cnt-][i];
b[cnt][i]=b[cnt-][i];
}
for(int i=;i>=;i--){
if( !(x>>i) ) continue;
if( !a[cnt][i] ){
a[cnt][i]=x;
b[cnt][i]=cur;
break;
}
else{
if( cur>b[cnt][i] ){ //如果待插入的数字在原数组上更靠右,则用线性基上的数与其交换
swap(a[cnt][i],x);
swap(b[cnt][i],cur); //位置也要交换
}
x^=a[cnt][i];
}
}
} int query(int l,int r){
l=l%cnt+; r=r%cnt+; //注意这里是%cnt,不是%n
if( l>r ) swap(l,r);
int ret=;
for(int i=;i>=;i--){
if( b[r][i]>=l ){ //如果在原数组中的位置比l更靠右,那么就产生贡献,此处b[r][i]就已经限制了右区间
ret=max(ret,ret^a[r][i]); //线性基贪心求最大值的基本操作
}
}
return ret;
} int main()
{
int t; scanf("%d",&t);
while( t-- ){
cnt=;
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
int a;
scanf("%d",&a);
LB(a);
}
int lastans=, opt, x, y; //lastans用于处理强制在线
for(int i=;i<m;i++){
scanf("%d%d",&opt,&x);
if( opt== ){
scanf("%d",&y);
x=x^lastans;
y=y^lastans;
lastans = query(x, y);
printf("%d\n",lastans);
}
else{
LB(x^lastans);
}
}
}
return ;
}

前缀和线性基HDU6579的更多相关文章

  1. CodeForces - 1100F:Ivan and Burgers (线性基&贪心)(离线 在线)

    题意:给定N个数,Q次询问,求区间最大异或和. 思路:一开始想的线性基+线段树.单次线性基合并的复杂度为20*20,结合线段树,复杂度为O(NlogN*20*20):显然,超时. 超时代码: #inc ...

  2. HDU6579 2019HDU多校训练赛第一场1002 (线性基)

    HDU6579 2019HDU多校训练赛第一场1002 (线性基) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题意: 两种操作 1.在序列末 ...

  3. codeforces 1101G (Zero XOR Subset)-less 前缀异或+线性基

    题目传送门 题意:给出一个序列,试将其划分为尽可能多的非空子段,满足每一个元素出现且仅出现在其中一个子段中,且在这些子段中任取若干子段,它们包含的所有数的异或和不能为0. 思路:先处理出前缀异或,这样 ...

  4. [2019杭电多校第一场][hdu6579]Operation(线性基)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题目大意是两个操作,1个是求[l,r]区间子序列的最大异或和,另一个是在最后面添加一个数. 如果 ...

  5. 2019杭电多校第一场hdu6579 Operation(线性基)

    Operation 题目传送门 解题思路 把右边的数尽量往高位放,构造线性基的时候同时记录其在原序列中的位置,在可以插入的时候如果那个位置上存在的数字的位置比新放入的要小,就把旧的往后挤.用这种发现构 ...

  6. Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】

    题目分析: 考虑到这是一个区间的异或问题,不妨求出前缀和,令$sum[i] = Xor_{j=1}^{i}a[j]$. 对于区间$[l,r]$的异或结果,等于$sum[r] \oplus sum[l- ...

  7. CF1101G (Zero XOR Subset)-less 线性基

    传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...

  8. bzoj 2115 Xor - 线性基 - 贪心

    题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到 ...

  9. ACM线性基学习笔记

    https://www.cnblogs.com/31415926535x/p/11260897.html 概述 最近的几场多校出现了好几次线性基的题目,,会想起之前在尝试西安区域赛的一道区间异或和最大 ...

随机推荐

  1. JavaWeb网上图书商城完整项目--BaseServlet

    1.以前进行操作的时候,例如我们进行登陆操作我们使用LoginServlet进行处理,进行注册操作我们使用RegisterServlet,很多业务的操作的时候我们就要定义很多个Servlet 有了Ba ...

  2. linux网络编程-posix条件变量(40)

    举一个列子来说明条件变量: 假设有两个线程同时访问全局变量n,初始化值是0, 一个线程进入临界区,进行互斥操作,线程当n大于0的时候才执行下面的操作,如果n不大于0,该线程就一直等待. 另外一个线程也 ...

  3. Lens —— 最炫酷的 Kubernetes 桌面客户端

    原文链接:https://fuckcloudnative.io/posts/lens/ Kubernetes 的桌面客户端有那么几个,曾经 Kubernetic 应该是最好用的,但最近有个叫 Lens ...

  4. element ui 版本升级

    element ui 版本升级 1. 卸载之前版本 npm uninstall element-ui 2.重新安装element-ui npm i element-ui 3.就如package.jso ...

  5. mysql错误详解(1819):ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

    O(∩_∩)O哈哈~ 在学习 Mysql 的时候又遇到了新问题了 o(╥﹏╥)o 当我在准备为用户授权的时候: grant all privileges on *.* to 'root'@'%' id ...

  6. Python实用笔记 (22)面向对象编程——实例属性和类属性

    由于Python是动态语言,根据类创建的实例可以任意绑定属性. 给实例绑定属性的方法是通过实例变量,或者通过self变量: class Student(object): def __init__(se ...

  7. oracle如何实现自增?----用序列sequence的方法来实现

    将表t_user的字段ID设置为自增:(用序列sequence的方法来实现) ----创建表 Create  table  t_user( Id number(6),userid varchar2(2 ...

  8. HDU 5969 最大的位或【贪心】

    题目 B君和G君聊天的时候想到了如下的问题. 给定自然数l和r ,选取2个整数x,y满足l <= x <= y <= r ,使得x|y最大. 其中|表示按位或,即C. C++. Ja ...

  9. application.yml和application.properties文件的区别

    maven项目 .yml文件时树状结构,层级浅时比较方便,层级深的时候就比较麻烦了 .properties文件时属性访问结构,层级深浅对它来说是一样的,而且相较于.yml类型的文件比较好配置,但缺点也 ...

  10. css获取除第一个之外的子元素

    在前端页面开发中,需要使用css来选择除了第一个之外的子元素,例如希望每个span之间能间隔一定的距离,单不能给每个span设置margin-left,这样会导致第一个span的前面有间距,影响排版. ...