Get Many Persimmon Trees

POJ - 2029

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

————————————————————————————————————————————————————————————

主要是为了练习二维线段树。点修改,区域查询。

用二维线段树写这个题目真的很蠢,随便一个方法都比它好。

————————————————————————————————————————————————————————————

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6
7 using namespace std;
8 const int maxn=101;
9 struct LIE
10 {
11 int ll,lr,sum;
12 };
13 struct HANG
14 {
15 int hl,hr;
16 LIE lie[maxn<<2];
17 }hang[maxn<<2];
18 int t;
19 int n,m,w,h,ans=0;
20 void readint(int &x)
21 {
22 char c=getchar();
23 int f=1;
24 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
25 x=0;
26 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
27 x*=f;
28 }
29 void writeint(int x)
30 {
31 char s[20];
32 int js=0;
33 if(!x)
34 {
35 s[0]='0';
36 js=1;
37 }
38 else
39 {
40 while(x)
41 {
42 s[js]=x%10+'0';
43 js++;x/=10;
44 }
45 }
46 js--;
47 while(js>=0)putchar(s[js--]);
48 putchar('\n');
49 }
50 void buil(int pre,int cur,int ll,int lr)
51 {
52 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
53 hang[pre].lie[cur].sum=0;
54 if(ll==lr)return ;
55 int mid=(ll+lr)>>1;
56 buil(pre,cur<<1,ll,mid);
57 buil(pre,cur<<1|1,mid+1,lr);
58 }
59 void build(int cur,int hl,int hr,int ll,int lr)
60 {
61 hang[cur].hl=hl;hang[cur].hr=hr;
62 buil(cur,1,ll,lr);
63 if(hl==hr)return ;
64 int mid=(hl+hr)>>1;
65 build(cur<<1,hl,mid,ll,lr);
66 build(cur<<1|1,mid+1,hr,ll,lr);
67 }
68 void upda(int pre,int cur,int y)
69 {
70 hang[pre].lie[cur].sum++;
71 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return;
72 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
73 if(y<=mid)upda(pre,cur<<1,y);
74 else upda(pre,cur<<1|1,y);
75 }
76 void update(int cur,int x,int y)
77 {
78 upda(cur,1,y);
79 if(hang[cur].hl==hang[cur].hr)return;
80 int mid=(hang[cur].hl+hang[cur].hr)>>1;
81 if(x<=mid)update(cur<<1,x,y);
82 else update(cur<<1|1,x,y);
83 }
84 int quer(int pre,int cur,int yl,int yr)
85 {
86 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
87 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
88 int ans=0;
89 if(yl<=mid)ans+=quer(pre,cur<<1,yl,yr);
90 if(mid<yr)ans+=quer(pre,cur<<1|1,yl,yr);
91 return ans;
92 }
93 int query(int cur,int xl,int xr,int yl,int yr)
94 {
95 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return quer(cur,1,yl,yr);
96 int mid=(hang[cur].hl+hang[cur].hr)>>1;
97 int ans=0;
98 if(xl<=mid)ans+=query(cur<<1,xl,xr,yl,yr);
99 if(xr>mid)ans+=query(cur<<1|1,xl,xr,yl,yr);
100 return ans;
101 }
102 int main()
103 {
104 readint(t);
105 while(t)
106 {
107 readint(n);readint(m);
108 build(1,1,n,1,m);
109 for(int x,y,i=0;i<t;i++)
110 {
111 readint(x);readint(y);
112 update(1,x,y);
113 }
114 readint(w);readint(h);
115 ans=0;
116 for(int i=1;i<=n-w+1;i++)
117 for(int j=1;j<=m-h+1;j++)
118 {
119 ans=max(ans,query(1,i,i+w-1,j,j+h-1));
120 }
121 writeint(ans);
122 readint(t);
123 }
124 return 0;
125 }

POJ2029 二维线段树的更多相关文章

  1. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  7. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  8. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

  9. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

随机推荐

  1. 7. JDK拍了拍你:字符串拼接一定记得用MessageFormat#format

    目录 ✍前言 版本约定 ✍正文 DateFormat:日期时间格式化 SimpleDateFormat NumberFormat:数字格式化 DecimalFormat 一.0和#的使用(最常见使用场 ...

  2. JavaDailyReports10_16

    今天学习安装配置了JavaWeb的资源环境, 明天开始学习HTML!

  3. python在线练习

    不管学习那门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行. 这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从中选择自 ...

  4. container_of 宏

    宏的作用 该宏的作用就是根据结构体中一个成员变量的地址求结构体首地址 如何做到 如果要想根据结构体成员的地址求结构体的首地址,我们需要分三步: 第一步:明确成员变量的地址: 第二步:计算成员变量在该结 ...

  5. 腾讯IOT之树莓派物联网设备

    目录 腾讯IOT之树莓派物联网设备 硬件配置 软件配置 Tecent IOT 开发平台的使用 新建项目 新建产品 添加自定义功能 设备开发 微信小程序配置 面板配置 新建设备 使用设备 在线调试 设备 ...

  6. 【MySQL 基础】MySQ LeetCode

    MySQL LeetCode 175. 组合两个表 题目描述 表1: Person +-------------+---------+ | 列名 | 类型 | +-------------+----- ...

  7. 【Flutter】功能型组件之导航返回拦截

    前言 为了避免用户误触返回按钮而导致APP退出,在很多APP中都拦截了用户点击返回键的按钮,然后进行一些防误触判断,比如当用户在某一个时间段内点击两次时,才会认为用户是要退出(而非误触).Flutte ...

  8. SpringBoot 导入插件报错 Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1

    使用 maven 导入插件的时候报错: Cannot resolve plugin org.springframework.boot:spring-boot-maven-plugin:2.4.1 我的 ...

  9. Mongodb 安装和副本集集群搭建

    通用步骤,适用于所有你需要用的软件. 总结为5大步骤: 找到官网-->下载包-->解压-->修改配置-->启动 不懂的,首选官网api,次选百度 1.安装mongodb mon ...

  10. 分别使用 Python 和 Math.Net 调用优化算法

    1. Rosenbrock 函数 在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 .也称为 R ...