Get Many Persimmon Trees

POJ - 2029

Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aizu for a long time in the 18th century. In order to reward him for his meritorious career in education, Katanobu Matsudaira, the lord of the domain of Aizu, had decided to grant him a rectangular estate within a large field in the Aizu Basin. Although the size (width and height) of the estate was strictly specified by the lord, he was allowed to choose any location for the estate in the field. Inside the field which had also a rectangular shape, many Japanese persimmon trees, whose fruit was one of the famous products of the Aizu region known as 'Mishirazu Persimmon', were planted. Since persimmon was Hayashi's favorite fruit, he wanted to have as many persimmon trees as possible in the estate given by the lord. 
For example, in Figure 1, the entire field is a rectangular grid whose width and height are 10 and 8 respectively. Each asterisk (*) represents a place of a persimmon tree. If the specified width and height of the estate are 4 and 3 respectively, the area surrounded by the solid line contains the most persimmon trees. Similarly, if the estate's width is 6 and its height is 4, the area surrounded by the dashed line has the most, and if the estate's width and height are 3 and 4 respectively, the area surrounded by the dotted line contains the most persimmon trees. Note that the width and height cannot be swapped; the sizes 4 by 3 and 3 by 4 are different, as shown in Figure 1. 
 
Figure 1: Examples of Rectangular Estates
Your task is to find the estate of a given size (width and height) that contains the largest number of persimmon trees.

Input

The input consists of multiple data sets. Each data set is given in the following format. 


W H 
x1 y1 
x2 y2 
... 
xN yN 
S T 

N is the number of persimmon trees, which is a positive integer less than 500. W and H are the width and the height of the entire field respectively. You can assume that both W and H are positive integers whose values are less than 100. For each i (1 <= i <= N), xi and yi are coordinates of the i-th persimmon tree in the grid. Note that the origin of each coordinate is 1. You can assume that 1 <= xi <= W and 1 <= yi <= H, and no two trees have the same positions. But you should not assume that the persimmon trees are sorted in some order according to their positions. Lastly, S and T are positive integers of the width and height respectively of the estate given by the lord. You can also assume that 1 <= S <= W and 1 <= T <= H. 

The end of the input is indicated by a line that solely contains a zero. 

Output

For each data set, you are requested to print one line containing the maximum possible number of persimmon trees that can be included in an estate of the given size.

Sample Input

16
10 8
2 2
2 5
2 7
3 3
3 8
4 2
4 5
4 8
6 4
6 7
7 5
7 8
8 1
8 4
9 6
10 3
4 3
8
6 4
1 2
2 1
2 4
3 4
4 2
5 3
6 1
6 2
3 2
0

Sample Output

4
3

————————————————————————————————————————————————————————————

主要是为了练习二维线段树。点修改,区域查询。

用二维线段树写这个题目真的很蠢,随便一个方法都比它好。

————————————————————————————————————————————————————————————

  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<cmath>
5 #include<algorithm>
6
7 using namespace std;
8 const int maxn=101;
9 struct LIE
10 {
11 int ll,lr,sum;
12 };
13 struct HANG
14 {
15 int hl,hr;
16 LIE lie[maxn<<2];
17 }hang[maxn<<2];
18 int t;
19 int n,m,w,h,ans=0;
20 void readint(int &x)
21 {
22 char c=getchar();
23 int f=1;
24 for(;c<'0' || c>'9';c=getchar())if(c=='-')f=-f;
25 x=0;
26 for(;c<='9'&& c>='0';c=getchar())x=(x<<1)+(x<<3)+c-'0';
27 x*=f;
28 }
29 void writeint(int x)
30 {
31 char s[20];
32 int js=0;
33 if(!x)
34 {
35 s[0]='0';
36 js=1;
37 }
38 else
39 {
40 while(x)
41 {
42 s[js]=x%10+'0';
43 js++;x/=10;
44 }
45 }
46 js--;
47 while(js>=0)putchar(s[js--]);
48 putchar('\n');
49 }
50 void buil(int pre,int cur,int ll,int lr)
51 {
52 hang[pre].lie[cur].ll=ll;hang[pre].lie[cur].lr=lr;
53 hang[pre].lie[cur].sum=0;
54 if(ll==lr)return ;
55 int mid=(ll+lr)>>1;
56 buil(pre,cur<<1,ll,mid);
57 buil(pre,cur<<1|1,mid+1,lr);
58 }
59 void build(int cur,int hl,int hr,int ll,int lr)
60 {
61 hang[cur].hl=hl;hang[cur].hr=hr;
62 buil(cur,1,ll,lr);
63 if(hl==hr)return ;
64 int mid=(hl+hr)>>1;
65 build(cur<<1,hl,mid,ll,lr);
66 build(cur<<1|1,mid+1,hr,ll,lr);
67 }
68 void upda(int pre,int cur,int y)
69 {
70 hang[pre].lie[cur].sum++;
71 if(hang[pre].lie[cur].ll==hang[pre].lie[cur].lr)return;
72 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
73 if(y<=mid)upda(pre,cur<<1,y);
74 else upda(pre,cur<<1|1,y);
75 }
76 void update(int cur,int x,int y)
77 {
78 upda(cur,1,y);
79 if(hang[cur].hl==hang[cur].hr)return;
80 int mid=(hang[cur].hl+hang[cur].hr)>>1;
81 if(x<=mid)update(cur<<1,x,y);
82 else update(cur<<1|1,x,y);
83 }
84 int quer(int pre,int cur,int yl,int yr)
85 {
86 if(yl<=hang[pre].lie[cur].ll && hang[pre].lie[cur].lr<=yr)return hang[pre].lie[cur].sum;
87 int mid=(hang[pre].lie[cur].ll+hang[pre].lie[cur].lr)>>1;
88 int ans=0;
89 if(yl<=mid)ans+=quer(pre,cur<<1,yl,yr);
90 if(mid<yr)ans+=quer(pre,cur<<1|1,yl,yr);
91 return ans;
92 }
93 int query(int cur,int xl,int xr,int yl,int yr)
94 {
95 if(xl<=hang[cur].hl && hang[cur].hr<=xr)return quer(cur,1,yl,yr);
96 int mid=(hang[cur].hl+hang[cur].hr)>>1;
97 int ans=0;
98 if(xl<=mid)ans+=query(cur<<1,xl,xr,yl,yr);
99 if(xr>mid)ans+=query(cur<<1|1,xl,xr,yl,yr);
100 return ans;
101 }
102 int main()
103 {
104 readint(t);
105 while(t)
106 {
107 readint(n);readint(m);
108 build(1,1,n,1,m);
109 for(int x,y,i=0;i<t;i++)
110 {
111 readint(x);readint(y);
112 update(1,x,y);
113 }
114 readint(w);readint(h);
115 ans=0;
116 for(int i=1;i<=n-w+1;i++)
117 for(int j=1;j<=m-h+1;j++)
118 {
119 ans=max(ans,query(1,i,i+w-1,j,j+h-1));
120 }
121 writeint(ans);
122 readint(t);
123 }
124 return 0;
125 }

POJ2029 二维线段树的更多相关文章

  1. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  2. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  5. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  6. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  7. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  8. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

  9. HDU 4819 Mosaic(13年长春现场 二维线段树)

    HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...

随机推荐

  1. navicat12.0.26如何激活

    首先准备好所需工具链接:https://pan.baidu.com/s/1EHATRC0M34n-aNteIyBXbw 密码:r7tf 下载后如图分别为64位和32位. 操作时需要断掉网络   Nav ...

  2. VS2015配置环境支持opencv3库(网络方法总结)

    今天安装了opencv3.4.1的版本,之前一直是在ubuntu上做的,本次在windows10上使用VS2015来开发. VS2015是之前安装的,能正常的编译程序. 1. 安装opencv,下载o ...

  3. Mac如何下载软件

    1.App Store  2.软件官网   3.Mac软件网站  4.搜狗微信 个人首选App Store,里面的软件安全可靠,其次就是官网,必不得已才去其他网站下载,毕竟不是App Store或官网 ...

  4. matplotlib中subplots的用法

    1.matplotlib中如果只画一张图的话,可以直接用pyplot,一般的做法是: import matplotlib.pyplot as plt plt.figure(figsize=(20,8) ...

  5. 第二章 进程同步(二)——> 重点

    2.4  进程同步 2.4.1  进程同步的基本概念 1.  两种形式的制约关系 (1)间接相互制约关系:互斥问题(往往是互斥设备)---是同步的特例 (2)直接相互制约关系:同步问题 注: 互斥问题 ...

  6. oracle 客户端与服务器端字符集原理(转自totozlj)

    1.环境假设: 名词解释:应用程序页面即用户在浏览器中看到的页面,一般程序员在写页面的时候都会在页面中设置编码,这个编码也即是数据在浏览器到web服务器间传输的编码,如果不设置则默认iso-8859的 ...

  7. spark常用提交任务的基本的参数配置

    #!/bin/bash #队列名 根据yarn的队列提交 realtime_queue=root #提交的任务名 my_job_name="OrderQZ" spark-shell ...

  8. 【MyBatis】MyBatis 连接池和事务控制

    MyBatis 连接池和事务控制 文章源码 MyBaits 连接池 实际开发中都会使用连接池,因为它可以减少获取连接所消耗的时间.具体可查看 MyBatis 数据源配置在 SqlMapConfig.x ...

  9. 【Linux】make编译的小技巧

    ------------------------------------------------------------------------------------------------- | ...

  10. 爬虫学习(二)requests模块的使用

    一.requests的概述 requests模块是用于发送网络请求,返回响应数据.底层实现是urllib,而且简单易用,在python2.python3中通用,能够自动帮助我们解压(gzip压缩的等) ...