本文实例讲述了python数据结构之图深度优先和广度优先用法。分享给大家供大家参考。具体如下:

首先有一个概念:回溯

  回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

深度优先算法:

(1)访问初始顶点v并标记顶点v已访问。
(2)查找顶点v的第一个邻接顶点w。
(3)若顶点v的邻接顶点w存在,则继续执行;否则回溯到v,再找v的另外一个未访问过的邻接点。
(4)若顶点w尚未被访问,则访问顶点w并标记顶点w为已访问。
(5)继续查找顶点w的下一个邻接顶点wi,如果v取值wi转到步骤(3)。直到连通图中所有顶点全部访问过为止。

广度优先算法:

(1)顶点v入队列。
(2)当队列非空时则继续执行,否则算法结束。
(3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。
(4)查找顶点v的第一个邻接顶点col。
(5)若v的邻接顶点col未被访问过的,则col入队列。
(6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。

代码:

# -*- coding: utf-8 -*-
class Graph(object):
def __init__(self,*args,**kwargs):
self.node_neighbors = {}
self.visited = {}
def add_nodes(self,nodelist):
for node in nodelist:
self.add_node(node)
def add_node(self,node):
if not node in self.nodes():
self.node_neighbors[node] = []
def add_edge(self,edge):
u,v = edge
if(v not in self.node_neighbors[u]) and ( u not in self.node_neighbors[v]):
self.node_neighbors[u].append(v)
if(u!=v):
self.node_neighbors[v].append(u)
def nodes(self):
return self.node_neighbors.keys()
def depth_first_search(self,root=None):
order = []
def dfs(node):
self.visited[node] = True
order.append(node)
for n in self.node_neighbors[node]:
if not n in self.visited:
dfs(n)
if root:
dfs(root)
for node in self.nodes():
if not node in self.visited:
dfs(node)
print order
return order
def breadth_first_search(self,root=None):
queue = []
order = []
def bfs():
while len(queue)> 0:
node = queue.pop(0)
self.visited[node] = True
for n in self.node_neighbors[node]:
if (not n in self.visited) and (not n in queue):
queue.append(n)
order.append(n)
if root:
queue.append(root)
order.append(root)
bfs()
for node in self.nodes():
if not node in self.visited:
queue.append(node)
order.append(node)
bfs()
print order
return order
if __name__ == '__main__':
g = Graph()
g.add_nodes([i+1 for i in range(8)])
g.add_edge((1, 2))
g.add_edge((1, 3))
g.add_edge((2, 4))
g.add_edge((2, 5))
g.add_edge((4, 8))
g.add_edge((5, 8))
g.add_edge((3, 6))
g.add_edge((3, 7))
g.add_edge((6, 7))
print "nodes:", g.nodes()
order = g.breadth_first_search(1)
order = g.depth_first_search(1)

结果:

nodes: [1, 2, 3, 4, 5, 6, 7, 8]

广度优先:
[1, 2, 3, 4, 5, 6, 7, 8]

深度优先:

[1, 2, 4, 8, 5, 3, 6, 7]

python数据结构之图深度优先和广度优先实例详解的更多相关文章

  1. python数据结构之图深度优先和广度优先

    首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法 ...

  2. 【python库模块】Python subprocess模块功能与常见用法实例详解

    前言 这篇文章主要介绍了Python subprocess模块功能与常见用法,结合实例形式详细分析了subprocess模块功能.常用函数相关使用技巧. 参考 1. Python subprocess ...

  3. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  4. python数据结构之图的实现方法

    python数据结构之图的实现方法 本文实例讲述了python数据结构之图的实现方法.分享给大家供大家参考.具体如下: 下面简要的介绍下: 比如有这么一张图:     A -> B     A ...

  5. python数据结构之图的实现

    python数据结构之图的实现,官方有一篇文章介绍,http://www.python.org/doc/essays/graphs.html 下面简要的介绍下: 比如有这么一张图: A -> B ...

  6. python中argparse模块用法实例详解

    python中argparse模块用法实例详解 这篇文章主要介绍了python中argparse模块用法,以实例形式较为详细的分析了argparse模块解析命令行参数的使用技巧,需要的朋友可以参考下 ...

  7. python+requests接口自动化测试框架实例详解

    python+requests接口自动化测试框架实例详解   转自https://my.oschina.net/u/3041656/blog/820023 摘要: python + requests实 ...

  8. Python编程之列表操作实例详解【创建、使用、更新、删除】

    Python编程之列表操作实例详解[创建.使用.更新.删除] 这篇文章主要介绍了Python编程之列表操作,结合实例形式分析了Python列表的创建.使用.更新.删除等实现方法与相关操作技巧,需要的朋 ...

  9. python自定义异常实例详解

    python自定义异常实例详解 本文通过两种方法对Python 自定义异常进行讲解,第一种:创建一个新的exception类来拥有自己的异常,第二种:raise 唯一的一个参数指定了要被抛出的异常 1 ...

随机推荐

  1. LeetCode 94 | 基础题,如何不用递归中序遍历二叉树?

    今天是LeetCode专题第60篇文章,我们一起来看的是LeetCode的94题,二叉树的中序遍历. 这道题的官方难度是Medium,点赞3304,反对只有140,通过率有63.2%,在Medium的 ...

  2. Database4.exe用来导入excel

    从ACCESS数据库导出的EXCEL表格,可以通过database4.exe来连接,并导出sql脚本,再用database4.exe来连接ACCESS并先创建于脚本结构一致的表,然后复制脚本,从新生成 ...

  3. JAVA集合类简要笔记 - 内部类 包装类 Object类 String类 BigDecimal类 system类

    常用类 内部类 成员内部类.静态内部类.局部内部类.匿名内部类 概念:在一个类的内部再定义一个完整的类 特点: 编译之后可生成独立的字节码文件 内部类可直接访问外部类私有成员,而不破坏封装 可为外部类 ...

  4. Fitness - 05.19

    倒计时226天 运动45分钟,共计9组,4.7公里.拉伸10分钟. 每组跑步3分钟(6.5KM/h),走路2分钟(5.5KM/h). 上周的跑步计划中断了,本周重复第三阶段的跑步计划. 一共掉了10斤 ...

  5. TDengine能比Hadoop快10倍?

    之前对国产的时序大数据存储引擎 TDengine 感兴趣,因为号称比Hadoop快十倍,一直很好奇怎么实现的,所以最近抽空看了下白皮书和设计文档. 如果用一句话总结,就是 TDengine 是为特定的 ...

  6. Java反射(一)

    什么是反射? 在程序的运行过程中,可以动态的创建对象. 反射的基石是什么? 字节码对象是反射的基石.字节码对象:Java类文件通过javac进行编译后生成的xxx.class文件,此文件由jvm加载至 ...

  7. YOLOv4: Darknet 如何于 Docker 编译,及训练 COCO 子集

    YOLO 算法是非常著名的目标检测算法.从其全称 You Only Look Once: Unified, Real-Time Object Detection ,可以看出它的特性: Look Onc ...

  8. Ant Jmeter Jenkins生成html测试报告

    Ant配置1. 将jmeter安装目录或者源码目录下\apache-jmeter-3.1\extras的ant-jmeter-1.1.1.jar复制到ant安装目录下apache-ant-1.10.3 ...

  9. Tomcat +Nginx+Redis实现session共享

    一.准备工作 中间件:Tomcat.Redis.Nginx jar包:commons-pool2-2.4.2.jar.jedis-2.8.0.jar.tomcat-redis-session-mana ...

  10. 乔悟空-CTF-i春秋-Misc-爆破3

    hehe,第一次用这个,开始CTF刷题之旅 2020.09.02 题目地址 学习 题目分析 下边是题目给的php源码,意思就是进行源码审计,分析出能输出flag的条件. 这东西我是真小白,so,积累经 ...