题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若“永不停息”(←_←)*,就输出"FOREVER"。

解法:用拓展欧几里德方法求出gcd最大公因数,再利用同余性质转化,求同余方程,或者不定方程。其中题目可化为 a+cx=b(mod 2^k) → cx=b-a(mod 2^k),求最小正整数解。也是求解同余方程。

先将方程化为一般形式:ax=c(mod p) →  ax+py=c 。若 gcd(a,p)|c,就可以利用 ax+py=gcd(a,b)(mod p) [一般没有mod p] ,再把变量 x,y 乘上 c/gcd(a,b) 就是答案了。而要求最小正整数解,就是根据 ax+py=gcd(a,p) → a(x+p/gcd(a,p))+p(y-a/gcd(a,p)=gcd(a,p) ,所有的 x' 都满足 x+p/gcd(a,p) 来进行调整,并且取模。因为 每对 x 与 x' 都相差 p/gcd(a,p),那么根据同余的定义,x 和 x' 关于模 p/gcd(a,p) 同余,所以可以一直取模来调整。而对于 p/gcd(a,p) ,为正时取模才有保证最非负的意义。

注意——位运算超过30位时,尽管变量为long long,也要在之前加上强制转型(long long)。见代码的24行......之前我一次比赛,数组初始化是long long类型的,也要在数字后面加上"LL"或" l l "。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 LL mabs(LL x) {return x>0?x:-x;}
9 LL exgcd(LL a,LL b,LL& x,LL& y)
10 {
11 if (!b) {x=1,y=0; return a;}
12 LL d,tx,ty;
13 d=exgcd(b,a%b,tx,ty);//bx'+(a%b)y'=1(mod p)
14 x=ty,y=tx-(a/b)*ty;//ay'+b(x'-t*y')=1(mod p)
15 return d;
16 }
17 int main()
18 {
19 LL aa,bb,cc,pp;
20 while (1)
21 {
22 scanf("%I64d%I64d%I64d%I64d",&aa,&bb,&cc,&pp);
23 if (!aa && !bb && !cc && !pp) break;
24 LL a=cc,b=(LL)1<<pp,c=bb-aa,p=(LL)1<<pp;
25 LL d,x,y;//cx=b-a(mod 2^k)-->cx+2^k*y=b-a-->gcd(c,2^k)=1才有解
26 d=exgcd(a,b,x,y);
27 if (c%d!=0) printf("FOREVER\n");
28 else
29 {
30 x=(x*(c/d))%p;//ax+by=c(mod p)的解
31 LL t=mabs(b/d);
32 x=(x%t+t)%t;//最小非负整数解
33 if (!x) x+=t;//为0时要调整
34 printf("%I64d\n",x);
35 }
36 }
37 return 0;
38 }

【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)的更多相关文章

  1. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  2. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  3. 【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)

    题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余 ...

  4. 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)

    题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...

  5. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  6. 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)

    题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...

  7. poj 2115 C Looooops(推公式+扩展欧几里得模板)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  8. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  9. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

随机推荐

  1. LeetCode561 数组拆分 I

    给定长度为 2n 的数组, 你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从1 到 n 的 min(ai, bi) 总和最大. 示例 ...

  2. 【LeetCode】365.水壶问题

    题目描述 解题思路 思路一:裴蜀定理-数学法 由题意,每次操作只会让桶里的水总量增加x或y,或者减少x或y,即会给水的总量带来x或y的变化量,转为数字描述即为:找到一对整数a,b使得下式成立: ax+ ...

  3. Tomcat配置上遇到的一些问题

    Tomcat启动:在bin目录下双击startup.bat文件就行. 访问:在浏览器输入http://localhost:8080 回车访问的是自己 的界面: http://othersip:8080 ...

  4. Openstack Nova 添加计算节点(六.一)

    Openstack Nova 添加计算节点(六.一) # 重要的两点: 1 时间同步 2 yum 源 # 安装软件: yum install openstack-selinux openstack-n ...

  5. VBA实现相同行合并

    帮人捣鼓了个VBA代码用来实现多行合并,具体需求为:列2/列3/列4 相同的情况下,则对应的行合并为一行,且列1用空格隔开,列5则相加: (对大多数办公室职员,VBA还算是提高效率的一个利器吧) 最终 ...

  6. oracle动态采样导致数据库出现大量cursor pin s wait on x等待

    生产库中,突然出现了大量的cursor pin s wait on x等待,第一反应是数据库出现了硬解析,查看最近的DDL语句,没有发现DDL.那么有可能这个sql是第一次进入 在OLTP高并发下产生 ...

  7. USB充电限流芯片,输出短路关闭,过压关闭

    PW1503,PW1502是超低RDS(ON)开关,具有可编程的电流限制,以保护电源源于过电流和短路保护.它具有超温保护以及反向闭锁功能. PW1503,PW1502采用薄型(1毫米)5针薄型SOT2 ...

  8. 消息队列之rabbitmq学习使用

    消息队列之rabbitmq学习使用 1.RabbitMQ简介 1.1.什么是RabbitMQ? RabbitMQ是一个开源的消息代理和队列服务器,用来通过普通协议在完全不同的应用之间共享数据,Rabb ...

  9. java虚拟机入门(五)- 常见垃圾回收器及jvm实现

    上节讲完了垃圾回收的基础,包括java的垃圾是什么,如何寻找以及常用的垃圾回收算法,那么那么多的理论知识讲完了,具体是什么样的东西在做着回收垃圾的事情呢?我们接下来就好好聊聊jvm中常用的垃圾回收器. ...

  10. Django 模型(数据库)-cmd下的操作

    Django 模型是与数据库相关的,与数据库相关的代码一般写在 models.py 中,Django 支持 sqlite3, MySQL, PostgreSQL等数据库,只需要在settings.py ...