题意:给一个初始值1,每步操作将1替换为01,将0替换为10。问N步操作后有多少对连续的0。

解法:f[i]表示第i步后的答案。可以直接打表发现规律——奇数步后,f[i]=f[i-1]*2-1;偶数步后,f[i]=f[i-1]*2+1;
至于原因——我只能简单说一点。第i步后的答案可由i-1步后的“01”+“1”+“0”的个数推出,而“01”*2+“1”+“0”=01串的总个数。用x表示i-1步后的“01”的个数,则f[i]=x+(2^(i-1)-x*2);但这样复杂度挺高,我也不知道怎么优化了。

noi oj上的实际数据没有1000这么大,在65以内,用long long也可以过。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 1010
7
8 int n;
9 long long f[N];
10
11 int main()
12 {
13 f[1]=0;
14 for (int i=2;i<=N;i++)
15 {
16 if (i%2) f[i]=f[i-1]*2-1;
17 else f[i]=f[i-1]*2+1;
18 }
19 while(~scanf("%d",&n)) printf("%lld\n",f[n]);
20 return 0;
21 }

无高精度

我高精度的不知为何在noi oj上AC,在poj上WA。若有大牛能纠正我,请多多指教~

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 1000
7
8 struct node
9 {
10 int s[210];
11 int l;
12 node() {l=0;memset(s,0,sizeof(s));}
13 };
14 node f[N+10];
15
16 node operator*(node x,int y)//不可省掉构成运算符左右的整型
17 {
18 node z;
19 z.l=x.l;
20 for (int i=1;i<=z.l;i++)
21 {
22 z.s[i]+=x.s[i]*2;
23 if (z.s[i]>9) z.s[i+1]+=z.s[i]/10,z.s[i]%=10;
24 }
25 while (z.s[z.l+1]) z.l++;
26 return z;
27 }
28 node operator-(node x,int y)
29 {
30 node z=x;
31 int t=1;
32 z.s[t]--;
33 while (z.s[t]<0) z.s[t]+=10,z.s[++t]--;
34 while (!z.s[z.l]) z.l--;
35 return z;
36 }
37 node operator+(node x,int y)
38 {
39 node z=x;
40 int t=1;
41 z.s[t]++;
42 while (z.s[t]>9) z.s[t+1]+=z.s[t]/10,z.s[t++]%=10;
43 while (z.s[z.l+1]) z.l++;
44 return z;
45 }
46 void print(node x)
47 {
48 for (int i=x.l;i>=1;i--)
49 printf("%d",x.s[i]);
50 printf("\n");
51 }
52 int main()
53 {
54 freopen("a.in","r",stdin);
55 freopen("a.out","w",stdout);
56 f[1].l=1,f[1].s[1]=0;
57 for (int i=2;i<=N;i++)
58 {
59 if (i%2) f[i]=f[i-1]*2-1;
60 else f[i]=f[i-1]*2+1;
61 }
62 int n;
63 while(~scanf("%d",&n)) print(f[n]);
64 return 0;
65 }

高精度+重载运算符

P.S.重载运算符 不可省掉构成运算符左右的2个类型,例如:整型。

【noi 2.6_9290】&【poj 2680】Computer Transformation(DP+高精度+重载运算符)的更多相关文章

  1. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  2. HOJ 2148&POJ 2680(DP递推,加大数运算)

    Computer Transformation Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4561 Accepted: 17 ...

  3. Computer Transformation(规律,大数打表)

    Computer Transformation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/ ...

  4. HDU 1041 Computer Transformation (简单大数)

    Computer Transformation http://acm.hdu.edu.cn/showproblem.php?pid=1041 Problem Description A sequenc ...

  5. hdu_1041(Computer Transformation) 大数加法模板+找规律

    Computer Transformation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/ ...

  6. (大数)Computer Transformation hdu1041

    Computer Transformation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/ ...

  7. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  8. Computer Transformation(简单数学题+大数)

    H - Computer Transformation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d &am ...

  9. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

随机推荐

  1. 【C++】《Effective C++》第二章

    第二章 构造/析构/赋值运算 条款05:了解C++默默编写并调用哪些函数 默认函数 一般情况下,编译器会为类默认合成以下函数:default构造函数.copy构造函数.non-virtual析构函数. ...

  2. Hive Query生命周期 —— 钩子(Hook)函数篇

    无论你通过哪种方式连接Hive(如Hive Cli.HiveServer2),一个HQL语句都要经过Driver的解析和执行,主要涉及HQL解析.编译.优化器处理.执行器执行四个方面. 以Hive目前 ...

  3. ./utils/build.sh: line 131: patch: command not found

    安装 percona-xtrabackup-2.1.5过程中遇到如下问题: [root@test percona-xtrabackup-2.1.5]# ./utils/build.sh innodb5 ...

  4. 【Oracle】oracle pctfree和pctused详解

    oracle pctfree和pctused详解 一.建立表时候,注意PCTFREE参数的作用 PCTFREE:为一个块保留的空间百分比,表示数据块在什么情况下可以被insert,默认是10,表示当数 ...

  5. postgresql插件安装

    postgresql安装包自带插件安装: 1.编译安装插件 # root用户 # postgresql安装过程省略 # 进入解压包的contrib目录 cd postgresql-10.6/contr ...

  6. luoguP2016 战略游戏

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了 ...

  7. LiteOS调测利器:backtrace函数原理知多少

    摘要:本文将会和读者分享LiteOS 5.0版本中Cortex-M架构的backtrace软件原理及实现,供大家参考和学习交流. 原理介绍 汇编指令的执行流程 图 1 汇编指令的执行顺序 上图1所示, ...

  8. 当中台遇上DDD,我们该如何设计微服务? - InfoQ https://www.infoq.cn/article/7QgXyp4Jh3-5Pk6LydWw

    当中台遇上DDD,我们该如何设计微服务? - InfoQ https://www.infoq.cn/article/7QgXyp4Jh3-5Pk6LydWw

  9. rehash (重新散列)

    rehash - Redis 设计与实现 http://redisbook.com/preview/dict/rehashing.html

  10. libevent源码学习之event

    timer event libevent添加一个间隔1s持续触发的定时器如下: struct event_base *base = event_base_new(); struct event *ti ...