洛谷P2423 [HEOI2012]朋友圈
题目大意:
有\(A,B\)两个点集,每个点有点权,在\(A\)集合中,两个点之间有边满足\(a_i\ xor\ a_j\ mod\ 2 = 1\),在\(B\)集合中,两个点之间有边满足\(b_i\ xor\ b_j\ mod\ 2=0\)或者\(b_i\ or\ b_j\)化成二进制有奇数个\(1\)
求\(A,B\)集合的最大团的大小
第一类数据:\(|A|\le 200,|B|\le 200\)
第二类数据:\(|A|\le 10,|B|\le 3000\)
目前算法表示最大团问题是个\(NPC\)问题,所以我们不能直接解决
但是我们也许知道,最大团=补图最大独立集
考虑建立补图求最大独立集
对于\(A\)集合,在原图中奇偶不同的点之间有边,则在补图中奇偶相同的点之间全部有边,奇偶不同的点之间没有边,对于补图最大独立集,\(A\)图中最多选两个
对于\(B\)集合,在原图中奇偶相同的点之间有边,奇偶不同的点一些有边,则在补图中,奇偶相同的点之间没有边,我们可以以奇偶为划分标准将补图划分成二分图
建出补图后,因为\(A\)集合中点数很少,我们可以枚举\(A\)集合中选取的点,然后把与这些点构成完全图的\(B\)集合中的点标记,跑二分图最大独立集
略卡常,加时间戳优化
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
namespace red{
#define eps (1e-8)
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=3010;
int haku;
int n,m,k,ret,tim,tim2;
int T[N];
int ap[N],bp[N];
bool jx[N][N];
bool jxb[N][N];
int vis[N<<2],f[N<<2];
int t3[N<<2];
int py[N],num;
int ans;
int head[N],cnt;
struct point
{
int nxt,to;
point(){}
point(const int &nxt,const int &to):nxt(nxt),to(to){}
}a[N*N];
inline void link(int x,int y)
{
a[++cnt]=(point){head[x],y};head[x]=cnt;
}
inline bool check(int x)
{
int sum=0;
for(;x;x-=(x&-x)) ++sum;
return sum&1;
}
inline bool find(int x)
{
for(int i=head[x];i;i=a[i].nxt)
{
int t=a[i].to;
if(vis[t]!=tim&&T[t]==tim2)
{
vis[t]=tim;
if(t3[t]!=tim||!f[t]||find(f[t]))
{
f[t]=x;
t3[t]=tim;
return 1;
}
}
}
return 0;
}
inline int solve()
{
int ret=0;
for(int i=1;i<=m;++i)
{
if(T[i]==tim2) ++tim,ret+=find(i);
else ++ret;
}
return m-ret;
}
inline void main()
{
haku=read();
while(haku--)
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;++i) ap[i]=read();
for(int j=1;j<=m;++j) bp[j]=read();
for(int x,y,i=1;i<=k;++i)
{
x=read(),y=read();
jx[x][y]=1;
}
for(int i=1;i<=m;++i)
{
if(bp[i]&1)
{
for(int j=1;j<=m;++j)
{
if(!(bp[j]&1))
if(!check(bp[i]|bp[j])) link(i,j);
}
}
}
ret=max(ret,solve());
for(int i=1;i<=n;++i)
{
++tim2;
for(int j=1;j<=m;++j)
{
if(jx[i][j]) T[j]=tim2;
}
ret=max(ret,solve()+1);
}
for(int i=1;i<=n;++i)
{
if(ap[i]&1)
for(int j=i+1;j<=n;++j)
{
if(!(ap[j]&1))
{
++tim2;
for(int k=1;k<=m;++k)
{
if(jx[i][k]&&jx[j][k]) T[k]=tim2;
}
ret=max(ret,solve()+2);
}
}
}
printf("%d\n",ret);
}
}
}
signed main()
{
red::main();
return 0;
}
洛谷P2423 [HEOI2012]朋友圈的更多相关文章
- luogu P2423 [HEOI2012]朋友圈 (最大团)
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目.两个国家看成是 ...
- bzoj 2744: [HEOI2012]朋友圈 二分图匹配
2744: [HEOI2012]朋友圈 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 612 Solved: 174[Submit][Status] ...
- 【BZOJ 2744】 2744: [HEOI2012]朋友圈 (最大团,二分图匹配,构图)
2744: [HEOI2012]朋友圈 Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他 ...
- 【二分图】HEOI2012 朋友圈
题目内容 洛谷链接 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大 ...
- 洛谷 P1851 好朋友
题目背景 小可可和所有其他同学的手腕上都戴有一个射频识别序列号码牌,这样老师就可以方便的计算出他们的人数.很多同学都有一个“好朋友” .如果 A 的序列号的约数之和恰好等于B 的序列号,那么 A的好朋 ...
- 【BZOJ 2744 】[HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- BZOJ2744:[HEOI2012]朋友圈(最大团,乱搞)
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- 【刷题】BZOJ 2744 [HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- [HEOI2012]朋友圈
题目 我们发现我们要求的是一个最大团问题,众所周知这是一个\(NP\)难问题,除了爆搜没有什么别的方法,但是这道题我们可以根据图的特殊性质入手 我们如果把\(B\)国的人分成奇数和偶数两类,就会发现奇 ...
随机推荐
- 剑指offer刷题(算法类_1)
斐波那契数列 007-斐波拉契数列 题目描述 题解 代码 复杂度 008-跳台阶 题目描述 题解 代码 复杂度 009-变态跳台阶 题目描述 题解 代码 复杂度 010-矩形覆盖 题目描述 题解 代码 ...
- 分布式监控系统之Zabbix网络发现
前文我们了解了zabbix的宏,自定义item和模板的相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/14013331.html:今天我们来了解下zab ...
- php在线预览pdf文件
话不多说,直接上代码 <?php public function read_pdf($file) { if(strtolower(substr(strrchr($file,'.'),1)) != ...
- 一文带你读懂!华为云在ACMUG技术沙龙上都透露了些啥?
摘要:近日,华为云数据库业务总裁苏光牛在ACMUG中国MySQL用户组主办的 "华为云专场" 技术沙龙中分享了华为云数据库重磅新品GaussDB的核心能力与竞争优势.那么, Gau ...
- 去年去阿里面试,面试官居然问我Java类和对象,我是这样回答的!
1.谈谈你对Java面向对象的理解? 面向对象就是把构成问题的事务分解成一个个对象,建立对象的目的不是一个步骤,而是为了描述一个事务在解决问题中的行为.类是面向对象的一个重要概念,类是很多个具有相同属 ...
- synchronized关键字的可重入性
/**父类*/public class SynchronizedDemo1 implements Runnable { @Override public void run() { try { meth ...
- SwiftUI:看我展示52张扑克牌,“很快啊!”
目录 思路 效果图 相关代码解析 枚举创建扑克牌号码 枚举创建扑克牌类型 viewModel逻辑 UI实现 源码 感受 思路 使用 SwiftUI 创建 UI 结构: 使用 swift 的枚举和结构体 ...
- Flask端点概念
Flask要点理解 路由端点 通常,我们使用app.route()装饰器将视图函数注册为路由.如果不使用该装饰器,也可以采用app.add_url_rule(rule, endpoint, view_ ...
- Jinja2语法自动补全配置
Jinja2语法自动补全配置 说明 在使用Pycharm社区版进行Web开发时,Jiaja2的语法是不会自动提示补全的,为了提高开发效率,需要根据个人习惯进行一些常用语法的自动补全配置,具体如下. 配 ...
- Java反射——java.lang.Class和类的加载
反射的基础: java.lang.Class Class类的实例对象,用于记录类描述信息. 源码说:represent classes and interfaces in a running Java ...