题解-[HNOI2016]序列

[HNOI2016]序列

给定 \(n\) 和 \(m\) 以及序列 \(a\{n\}\)。有 \(m\) 次询问,每次给定区间 \([l,r]\in[1,n]\),求

\[\sum_{l\le l'\le r'\le r}\min_{i=l'}^{r'}a_i
\]

数据范围:\(1\le n,m\le 10^5\),\(|a_i|\le 10^9\)。


蒟蒻要练习省选题,结果就遇到这道数据结构(好久没写数据结构题都忘光了)。结果正好遇到一道毒瘤题,于是蒟蒻来写篇题解。


这题是静态离线,令人想到 \(\texttt{ST}\) 表和莫队——真的就是他们。

将区间存下来排序,将左端点范围从小到大分 \(\sqrt n\) 份,左端点按份排序,右端点奇偶波浪排序。

friend int operator<(Moq x,Moq y){
if(cas[x.l]!=cas[y.l]) return x.l<y.l;
return (cas[x.l]&1)?x.r<y.r:x.r>y.r;
}

然后依次考虑排序后每一个区间询问,并通过上一个区间的答案递推,这就是莫队的思想


然后看这题:

如何通过上一个答案递推呢?需要先知道边界端点的贡献

即给定区间 \([l,r]\),\(l\) 端点的贡献\(=Ans[l,r]-Ans[l+1,r]\)。

比如下面给出一个序列 \(a\{n\}(n=10)\):

4 4 5 3 6 2 1 5 6 9

给定区间 \([l,r]=[3,9]\),即 \(a_l\sim a_r\) 为:

5 3 6 2 1 5 6

所以左端点 \((l=3,a_l=5)\) 的贡献应该为

\[\sum_{j=l}^r\min\limits_{k=l}^j a_k
\]

\[\min\{5\}+\min\{5,3\}+\min\{5,3,6\}+\cdots+\min\{5,3,6,2,1,5,6\}
\]
\[=5+3+3+2+1+1+1
\]

令人想起单调栈,然而不可能每次询问 \(\Theta(n)\) 跑一遍。所以可以预处理:

通过维护单调栈,求出对于每个 \(a_i\),\(lw_i(lw_i<i)\) 表示 \(i\) 左边第一个比 \(a_i\) 小的元素的下标;\(rw_i(rw_i>i)\) 表示 \(i\) 右边第一个比 \(a_i\) 小的元素的下标(如果左边不存在比 \(a_i\) 小的元素,\(lw_i=0\);如果右边不存在比 \(a_i\) 小的元素,\(rw_i=n+1\))。

这样的话,就可以维护一个前缀和 \(lsm_i\) 后缀和 \(rsm_i\),其中

\[lsm_i=lsm_{lw_i}+a_i(i-lw_i),rsm_i=rsm_{rw_i}+a_i(rw_i-i)
\]

然后上面的 \(5+3+3+2\) 就可以通过后缀和相减得,求右端点贡献时则用前缀和相减

因为对于区间 \([lw_i+1,i]\) 或 \([i,rw_i-1]\),\(a_i\) 为其最小元素。

void Side(){
lw.rz(n+7),rw.rz(n+7);
a[0]=-inf;
q.clear(),q.pb(0);
for(int i=1;i<=n;i++){
while(q.size()&&a[q.back()]>=a[i]) q.pop_back();
lw[i]=q.back(),q.pb(i);
}
a[0]=0;
a[n+1]=-inf;
q.clear(),q.pb(n+1);
for(int i=n;i>=1;i--){
while(q.size()&&a[q.back()]>=a[i]) q.pop_back();
rw[i]=q.back(),q.pb(i);
}
a[n+1]=0;
lsm.rz(n+7),rsm.rz(n+7);
for(int i=1;i<=n;i++) lsm[i]=lsm[lw[i]]+(lng)(i-lw[i])*a[i];
for(int i=n;i>=1;i--) rsm[i]=rsm[rw[i]]+(lng)(rw[i]-i)*a[i];
}

最后一个问题:\(1+1+1\) 部分怎么办?

因为右端点是随机的,所以如果直接把左端点的贡献当做 \(rsm_l-rsm_r\),必然不妥。

考虑到假设区间 \([l,r]\) 中 \(a_p\) 最小,那么必然

\[\forall j\in[p,r],\left(\min\limits_{k=l}^j a_k\right)=a_p
\]

所以算 \(1+1+1\) 部分可以通过维护静态区间最小值下标(\(\texttt{ST}\) 表)找到 \(p\),算出 \(a_p(r-p+1)\)。

然后正因为 \(a_p\) 是 \([l,r]\) 区间中最小的元素,所以 \([l,p-1]\) 段的左端点贡献也自然是 \(rsm_l-rsm_p\)。

所以对于区间 \([l,r]\),左端点贡献为

\[rsm_l-rsm_p+a_p(r-p+1)\qquad [a_p=\min_{i=l}^r a_i]
\]

右端点同理。

然后相邻两个区间之间就可以逐步转移了。

lng Mol(int l,int r){
int p=getmin(l,r);
return rsm[l]-rsm[p]+(lng)(r-p+1)*a[p];
}
lng Mor(int l,int r){
int p=getmin(l,r);
return lsm[r]-lsm[p]+(lng)(p-l+1)*a[p];
}
void runMo(){
int L=1,R=0;
for(int i=1;i<=m;i++){
while(L>qu[i].l) res+=Mol(--L,R);
while(R<qu[i].r) res+=Mor(L,++R);
while(L<qu[i].l) res-=Mol(L++,R);
while(R>qu[i].r) res-=Mor(L,R--);
ans[qu[i].I]=res;
}
}

时间复杂度 \(\Theta(m\sqrt n)\),空间复杂度 \(\Theta(n+m)\)。


Code

我这个蒟蒻垃圾真是傻傻讲不清楚,还是放代码吧(要开 \(\texttt{long long}\))。

代码有点长,于是蒟蒻划分了一下。

#include <bits/stdc++.h>
using namespace std; //Start
#define lng long long
#define db double
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define rz resize
const int inf=0x3f3f3f3f;
const lng INF=0x3f3f3f3f3f3f3f3f; //Data
int n,m;
vector<int> a; //Side
vector<int> lw,rw,q;
vector<lng> lsm,rsm;
void Side(){
lw.rz(n+7),rw.rz(n+7);
a[0]=-inf;
q.clear(),q.pb(0);
for(int i=1;i<=n;i++){
while(q.size()&&a[q.back()]>=a[i]) q.pop_back();
lw[i]=q.back(),q.pb(i);
}
a[0]=0;
a[n+1]=-inf;
q.clear(),q.pb(n+1);
for(int i=n;i>=1;i--){
while(q.size()&&a[q.back()]>=a[i]) q.pop_back();
rw[i]=q.back(),q.pb(i);
}
a[n+1]=0;
lsm.rz(n+7),rsm.rz(n+7);
for(int i=1;i<=n;i++) lsm[i]=lsm[lw[i]]+(lng)(i-lw[i])*a[i];
for(int i=n;i>=1;i--) rsm[i]=rsm[rw[i]]+(lng)(rw[i]-i)*a[i];//中间递推也要注意爆int
} //ST
vector<int> lg;
vector<vector<int> > st;
int stcmp(int x,int y){
return a[x]<a[y]?x:y;
}
void buildst(){
lg.rz(n+7);
for(int i=2;i<=n;i++) lg[i]=lg[i-1]+((1<<(lg[i-1]+1))<=i?1:0); //lg[i]=(int)log(i)
st.rz(lg[n]+7);
for(int j=0;j<=lg[n];j++) st[j].rz(n+7);
for(int i=1;i<=n;i++) st[0][i]=i;
for(int j=1;j<=lg[n];j++)
for(int i=1;i<=n-(1<<(j-1));i++) st[j][i]=stcmp(st[j-1][i],st[j-1][i+(1<<(j-1))]);
}
int getmin(int l,int r){
int len=lg[r-l+1];
return stcmp(st[len][l],st[len][r-(1<<len)+1]);
} //Moq
int sq;
lng res;
vector<int> cas;
vector<lng> ans;
struct Moq{
int l,r,I;
friend int operator<(Moq x,Moq y){
if(cas[x.l]!=cas[y.l]) return x.l<y.l;
return (cas[x.l]&1)?x.r<y.r:x.r>y.r;
}
};
vector<Moq> qu;
void buildMo(){
cas.rz(n+7),qu.rz(m+1);
sq=sqrt(n);
for(int i=1;i<=m;i++) scanf("%d%d",&qu[i].l,&qu[i].r),qu[i].I=i;
for(int i=1;i<=n;i++) cas[i]=(i-1)/sq+1;
sort(qu.begin(),qu.end());
}
lng Mol(int l,int r){
int p=getmin(l,r);
return rsm[l]-rsm[p]+(lng)(r-p+1)*a[p];
}
lng Mor(int l,int r){
int p=getmin(l,r);
return lsm[r]-lsm[p]+(lng)(p-l+1)*a[p];
}
void runMo(){
int L=1,R=0;
for(int i=1;i<=m;i++){
while(L>qu[i].l) res+=Mol(--L,R);
while(R<qu[i].r) res+=Mor(L,++R);
while(L<qu[i].l) res-=Mol(L++,R);
while(R>qu[i].r) res-=Mor(L,R--);
ans[qu[i].I]=res;
}
} //Main
int main(){
scanf("%d%d",&n,&m);
a.rz(n+7);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
ans.rz(m+7);
Side(),buildst(),buildMo(),runMo();
for(int i=1;i<=m;i++)
printf("%lld\n",ans[i]);
return 0;
}

祝大家学习愉快!

题解-[HNOI2016]序列的更多相关文章

  1. 【LG3246】[HNOI2016]序列

    [LG3246][HNOI2016]序列 题面 洛谷 题解 60pts 对于每个位置\(i\),单调栈维护它往左第一个小于等于它的位置\(lp_i\)以及往右第一个小于它的位置\(rp_i\). 那么 ...

  2. [BZOJ4540][HNOI2016]序列 莫队

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...

  3. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  4. BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]

    4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...

  5. 4540: [Hnoi2016]序列

    4540: [Hnoi2016]序列 https://www.lydsy.com/JudgeOnline/problem.php?id=4540 分析: 莫队+RMQ+单调栈. 考虑加入一个点后,区间 ...

  6. BZOJ4540 Hnoi2016 序列 【莫队+RMQ+单调栈预处理】*

    BZOJ4540 Hnoi2016 序列 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- ...

  7. [Bzoj4540][Hnoi2016] 序列(莫队 + ST表 + 单调队列)

    4540: [Hnoi2016]序列 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1567  Solved: 718[Submit][Status] ...

  8. [HNOI2016]序列 CDQ+DP

    [HNOI2016]序列 CDQ 链接 loj 思路 一个点最小变为l,最大变为r,不变的时候为v 那么j能在i前面就要满足. \(j<i\) \(r[j]<=v[i]\) \(v[j]& ...

  9. P6604 [HNOI2016]序列 加强版

    *I. P6604 [HNOI2016]序列 加强版 摘自学习笔记 简单树论 笛卡尔树部分例题 I. 和 P6503 比较类似.我们设 \(f_i\) 表示全局以 \(i\) 结尾的子区间的最小值之和 ...

随机推荐

  1. 402. 移掉K位数字

    给定一个以字符串表示的非负整数 num,移除这个数中的 k 位数字,使得剩下的数字最小. 注意: num 的长度小于 10002 且 ≥ k.num 不会包含任何前导零.示例 1 : 输入: num ...

  2. linux云服务搭建七日杀服务器

    目录 准备工作 1.设置swap 2.安装screen 3.安装SteamCmd运行所需环境 4.创建一个用户 steamCMD与七日杀服务器端 1.下载并安装SteamCMD 2.登录steam账号 ...

  3. css类名的使用

    ` Document .box { color: rgba(255, 0, 0, 1) } .box .box2 { color: rgba(0, 128, 0, 1) } .box.box2 { c ...

  4. [原题复现+审计][SUCTF 2019] WEB CheckIn(上传绕过、.user.ini)

    简介  原题复现:https://github.com/team-su/SUCTF-2019/tree/master/Web/checkIn  考察知识点:上传绕过..user.ini  线上平台:h ...

  5. cdh中jps显示process information unavailable问题的解决

    百度的方法有两种: 第一种 1.进入/tmp 2.删除该目录下的hsperfdata_${username} 文件夹 3.再执行jps 第二种 做软连接 或者修改权限hsperfdata_${user ...

  6. jQuery 第十章 工具方法-高级方法 $.ajax() $.Callbacks() .....

     $.ajax() $.Callbacks() $.Deferred() .then() $.when() ---------------------------------------------- ...

  7. django绕过admin登录设置

    在admin.py文件添加以下函数本文是转载:#绕过admin登录def allow_anonymous_user(): from django.contrib.auth.models import ...

  8. 区块链V1版本实现之一

    1. 程序地址:https://gitee.com/Jame_sz/beijing_go_term2.git 2. 程序编写流程: //1. 定义结构(区块头的字段比正常的少) //>1. 前区 ...

  9. 利用python库stats进行t检验

    ​ t检验通常分为三种,分别是单样本t检验.双样本t检验和配对样本t检验.本文基于python的scipy.stats函数对每种t检验进行了介绍和实验. 一.t检验介绍 无论哪种t检验,都有以下的基本 ...

  10. 抖音短视频爆火的背后到底是什么——如何快速的开发一个完整的直播app

    前言 今年移动直播行业的兴起,诞生了一大批网红,甚至明星也开始直播了,因此不得不跟上时代的步伐,由于第一次接触的原因,因此花了很多时间了解直播,今天我来教你从零开始搭建一个完整的直播app,希望能帮助 ...