【数论】HAOI2012 容易题
题目大意
洛谷链接
有一个数列A已知对于所有的\(A[i]\)都是\(1~n\)的自然数,并且知道对于一些\(A[i]\)不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 \(mod\ 1000000007\)的值。
输入格式
第一行三个整数\(n,m,k\)分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来\(k\)行,每行两个正整数\(x,y\)表示\(A[x]\)的值不能是\(y\)。
输出格式
一行一个整数表示所有可能的数列的积的和对\(1000000007\)取模后的结果。如果一个合法的数列都没有,答案输出\(0\)。
样例输入
3 4 5
1 1
1 1
2 2
2 3
4 3
样例输出
90
样例解释
\(A[1]\)不能取\(1\)
\(A[2]\)不能取\(2、3\)
\(A[4]\)能取\(3\)
所以可能的数列有以下\(12\)种
第一行为数列
第二行为积
2 1 1 1
2
2 1 1 2
4
2 1 2 1
4
2 1 2 2
8
2 1 3 1
6
2 1 3 2
12
3 1 1 1
3
3 1 1 2
6
3 1 2 1
6
3 1 2 2
12
3 1 3 1
9
3 1 3 2
18
思路
从一般到特殊,如果没有不能选的限制,因为每个元素可以把范围内每个数取到,可以得到结果是:
\(( \sum_{1\le k\le n}k)^m\)
然而题目中提到有些元素的有些取值取不到,那么对应的元素的总价值把这些取值都减去再乘进去就可以了。剩下的没有动的元素直接累乘,注意要用到快速幂。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100000+5;
const long long mod=1e9+7;
map<pair<ll,ll>,ll> a;//学lc大佬用的pair...其实用结构体也可
map<ll,ll> b;
ll n,m,k,cnt;
ll vis[maxn];
ll qpow(ll now,ll x){//快速幂的板子
ll vis=now%mod,res=1;
while(x){
if(x&1){
res*=(vis%mod);
res%=mod;
}
vis*=(vis%mod);
vis%=mod;
x>>=1;
}
return res;
}
int main(){
scanf("%lld%lld%lld",&n,&m,&k);
ll sum=(n+1)*n/2;
for(ll i=1;i<=k;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
if(!b[x])vis[++cnt]=x;
if(a[make_pair(x,y)])continue;//样例给出了重复限制,所以记一下
a[make_pair(x,y)]=1;
b[x]+=y;//记录限制的总和
}
ll ans=1;
for(ll i=1;i<=cnt;i++){
ans*=(sum-b[vis[i]])%mod;
ans%=mod;
}
printf("%lld\n",((ans%mod)*qpow(sum,m-cnt)%mod)%mod);
return 0;
}
【数论】HAOI2012 容易题的更多相关文章
- 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂
[bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- BZOJ 2751: [HAOI2012]容易题(easy) 数学
2751: [HAOI2012]容易题(easy) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2751 Description 为了使 ...
- BZOJ2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 872 Solved: 377[Submit][S ...
- BZOJ 2751: [HAOI2012]容易题(easy)( )
有限制的最多就K个, 所以我们处理一下这K个就行了. 其他可以任选, 贡献都是∑i (1≤i≤N), 用快速幂. ------------------------------------------- ...
- 2751: [HAOI2012]容易题(easy)
2751: [HAOI2012]容易题(easy) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1087 Solved: 477[Submit][ ...
- [HAOI2012] 容易题[母函数]
794. [HAOI2012] 容易题 ★★☆ 输入文件:easy.in 输出文件:easy.out 简单对比时间限制:1 s 内存限制:128 MB 秒 输入:easy.in 输出: ...
- 【bzoj2751】[HAOI2012]容易题(easy) 数论,简单题
Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪 ...
- P2220 [HAOI2012]容易题[小学数学]
题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...
随机推荐
- adb连接手机
1. 通过wifi, 利用adb来连接手机. 在pc的cmd中输入命令: adb connect 192.168.1.100 其中adb就是手机的ip. 如果连接成功, 就可以进入android的sh ...
- 【转】PHP面试总结
文章出处:https://www.cnblogs.com/codetao/p/6418127.html
- 学习 | jQuery移动端页面组件化开发(一)
最近在学习移动端组件化开发web页面,其中有好多小细节,值的去思考. 主要介绍JS的思路,具体的代码就不贴了,主要是想表达出一种思路 总体来说 1.入口文件,在入口文件中导入插件,插件样式,jquer ...
- 高可用集群之keepalived+lvs实战
keepalived简介 lvs在我之前的博客<高负载集群实战之lvs负载均衡-技术流ken>中已经进行了详细的介绍和应用,在这里就不再赘述.这篇博文将把lvs与keepalived相结合 ...
- springboot的文件路径,配置文件
生成springboot会指定一个包路径,启动的class文件在这个目录下,其他的controller等也要在这个目录的子目录下,不然会扫不到. 一般我们会维护两三个配置文件:生产环境,开发环境,测试 ...
- redis实现计数器
用redis实现计数器 社交产品业务里有很多统计计数的功能,比如: 用户: 总点赞数,关注数,粉丝数 帖子: 点赞数,评论数,热度 消息: 已读,未读,红点消息数 话题: 阅读数,帖子数,收藏数 统计 ...
- 如何使用 Python 進行字串格式化
前言: Python有几种方法可以显示程序的输出:数据可以以人类可读的形式打印出来,或者写入文件以供将来使用. 在开发应用程式时我们往往会需要把变数进行字串格式化,也就是说把字串中的变数替换成变量值. ...
- JavaScript函数报错SyntaxError: expected expression, got ';'
故事背景:编写Javaweb项目,在火狐浏览器下运行时firebug报错SyntaxError: expected expression, got ';'或者SyntaxError: expected ...
- Linux设置主机名称与host映射
uname -n :查看host对应的域名 2.在 /etc/hostname 删除原来的重新配置需要的域名 3.在 /etc/hosts 中添加域名和映射ip 4.重启系统 5.其他主机 ...
- 015 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 09 Unicode编码
015 01 Android 零基础入门 01 Java基础语法 02 Java常量与变量 09 Unicode编码 本文知识点:Unicode编码以及字符如何表示? ASCII码是美国提出的标准信息 ...