Root of AVL Tree

PAT-1066

  • 这是关于AVL即二叉平衡查找树的基本操作,包括旋转和插入
  • 这里的数据结构主要在原来的基础上加上节点的高度信息。
import java.util.*;

/**
* @Author WaleGarrett
* @Date 2020/9/5 10:41
*/
public class PAT_1066 {
public static void main(String[] args) {
Scanner scanner=new Scanner(System.in);
int n=scanner.nextInt();
AVLNode root=null;
while(n!=0){
int value=scanner.nextInt();
root=insert(root,value);
// printTree(root);
n--;
}
System.out.println(root.value);
}
static void printTree(AVLNode root){
List<AVLNode> list=new ArrayList<>();
list.add(root);
while(list.size()!=0){
AVLNode temp=list.remove(0);
System.out.print(temp.value+" ");
if(temp.left!=null)
list.add(temp.left);
if(temp.right!=null)
list.add(temp.right);
}
System.out.println();
} /**
* 顺时针旋转
* @param root
* @return
*/
public static AVLNode rightRotate(AVLNode root){
AVLNode temp=root.left;
root.left=temp.right;
temp.right=root;
temp.updateHeight();
root.updateHeight();
return temp;
} /**
* 逆时针旋转
* @param root
* @return
*/
public static AVLNode leftRotate(AVLNode root){
AVLNode temp=root.right;
root.right=temp.left;
temp.left=root;
temp.updateHeight();
root.updateHeight();
return temp;
}
/**
* 向平衡二叉排序树里插入一个节点
* @param value
*/
public static AVLNode insert(AVLNode root,int value){
if(root==null){
root=new AVLNode(null,null,value,1);
return root;
}
if(value<root.value){
root.left=insert(root.left,value);//插入根节点的左子树中
root.updateHeight();
if(root.getBalanceFactor()>1){//当前节点不平衡
if(root.left.getBalanceFactor()>0){//LL插入
root=rightRotate(root);
}else if(root.left.getBalanceFactor()<0){//LR插入
root.left=leftRotate(root.left);
root=rightRotate(root);
}
}
}else if(value>root.value){
root.right=insert(root.right,value);
root.updateHeight();
if(root.getBalanceFactor()<-1){//当前节点不平衡
if(root.right.getBalanceFactor()<0){//RR插入
root=leftRotate(root);
}else if(root.right.getBalanceFactor()>0){//RL插入
root.right=rightRotate(root.right);
root=leftRotate(root);
}
}
}
return root;
}
}
class AVLNode{
AVLNode left;
AVLNode right;
int value;
private int height;//该结点的高度
public AVLNode(){
left=right=null;
value=-1;
height=0;
}
public AVLNode(AVLNode left,AVLNode right,int value,int height){
this.value=value;
this.left=left;
this.right=right;
this.height=height;
}
public int getHeight() {
return height;
}
public int getBalanceFactor(){
int leftHeight,rightHeight;
if(left==null)
leftHeight=0;
else leftHeight=left.getHeight();
if(right==null)
rightHeight=0;
else rightHeight=right.getHeight();
return leftHeight-rightHeight;
}
void updateHeight(){
int leftHeight,rightHeight;
if(left==null)
leftHeight=0;
else leftHeight=left.getHeight();
if(right==null)
rightHeight=0;
else rightHeight=right.getHeight();
height=Math.max(leftHeight,rightHeight)+1;
}
}

PAT-1066(Root of AVL Tree)Java语言实现的更多相关文章

  1. PAT 1066 Root of AVL Tree[AVL树][难]

    1066 Root of AVL Tree (25)(25 分) An AVL tree is a self-balancing binary search tree. In an AVL tree, ...

  2. PAT 1066. Root of AVL Tree (25)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  3. PAT 1066 Root of AVL Tree

    #include <cstdio> #include <cstdlib> class Node { public: Node* L; Node* R; int height; ...

  4. PAT甲级1066. Root of AVL Tree

    PAT甲级1066. Root of AVL Tree 题意: 构造AVL树,返回root点val. 思路: 了解AVL树的基本性质. AVL树 ac代码: C++ // pat1066.cpp : ...

  5. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  6. pat 甲级 1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  7. PAT 甲级 1066 Root of AVL Tree (25 分)(快速掌握平衡二叉树的旋转,内含代码和注解)***

    1066 Root of AVL Tree (25 分)   An AVL tree is a self-balancing binary search tree. In an AVL tree, t ...

  8. PTA (Advanced Level) 1066 Root of AVL Tree

    Root of AVL Tree An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of ...

  9. PAT 甲级 1066 Root of AVL Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805404939173888 An AVL tree is a self- ...

  10. PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目 An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child ...

随机推荐

  1. A - Promotions

    题目详见http://7xjob4.com1.z0.glb.clouddn.com/3f644de6844d64706eb36baa3a0c27b0 这题是普通的拓扑排序,要把每一层的都保存下来. # ...

  2. python爬虫笔记Day01

    python爬虫笔记第一天 Requests库的安装 先在cmd中pip install requests 再打开Python IDM写入import requests 完成requests在.py文 ...

  3. Prometheus监控k8s企业级应用

    Prometheus架构图 常见的镜像 pod 备注 kube-state-metric 用来收集K8S基本状态信息的监控代理 node-exporter 专门用来收集K8S运算节点基础信息,需要部署 ...

  4. MySQL——时间、字符串、时间戳相互转换

    一.时间转字符串 select data_format(now(),'%Y-%m-%d %H:%i:%s'); 二.时间转时间戳 select unix_timestamp(now()); 三.字符串 ...

  5. Leetcode(144)-二叉树的前序遍历

    给定一个二叉树,返回它的 前序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,2,3] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 二叉树的前序遍历有递归 ...

  6. Python+OpenCV+图片旋转并用原底色填充新四角

    import cv2 from math import fabs, sin, cos, radians import numpy as np from scipy.stats import mode ...

  7. how to get svg text tspan x,y position value in js

    how to get svg text tspan x,y position value in js <svg xmlns="http://www.w3.org/2000/svg&qu ...

  8. js 反应&行动

    反应 class Reaction { _page = 1; get page() { return this._page; } set page(newValue) { this._page = n ...

  9. 算法型稳定币USDN是如何保持稳定的?

    数据显示,2019年稳定币市场总市值25亿美元,在整个加密货币市场占比 1.3%.可别小瞧了看似微小的1.3%这个数据,它其实是一个庞大的市场.稳定币不仅仅是货币的电子化,它还是一种可编程的加密货币, ...

  10. Baccarat是如何运用去中心化治理模式的?

    区块链的出现,让大家看到了去中心化的可能.去中心化的数字资产从最初的默默无闻,一路起起伏伏发展了十年,逐渐成为了大众认可的价值存储方式.去中心化的金融,使数字资产的生态建设者意识到,即使没有中心化的金 ...