Zju1100 Mondriaan
题目描述
有一个m行n列的矩阵,用1*2的骨牌(可横放或竖放)完全覆盖,骨牌不能重叠,有多少种不同的覆盖的方法? 你只需要求出覆盖方法总数mod p的值即可。
输入格式
三个整数数n,m,p,m<=5,p<=10000,n<=10000
输出格式
一个整数:总数模p的结果
不难想到可以用状压来做这题。设dp(i,j)表示第i列放置情况为j的二进制表示,其中j的第k位为1时表示这玩意是一块竖着的骨牌的上半部分,为0则是其余的情况。我们考虑一下dp(i,j)可以由哪些状态转移而来。
设上一行的二进制表示为j,当前一行的为k。由于当j的某些位置为1时,k的这些位置也必须为1。为了在满足我们的定义的同时把j的1给转移下来,我们可以将j和k做一次按位或运算。此时数j|k中为0的部分就是放横着的骨牌的地方。显然j|k中为0的连续部分长度必须是偶数。所以我们转移的第一个条件就是:
1.j|k的每一段连续0的长度都必须为偶数
如果上一行的某一位是1,而当前一行的这一位也是1,那么不合法,不能转移。所以我们的第二个转移的条件就是:
2.j和k的相同位置不能都为1
怎么判断两个条件呢?
对于第二个条件,我们可以将j和k做一次按位与运算,如果得到的数不为0,即得到的数里面含有1,那么不合法:
if(j&k) continue;
对于第一个条件,我们只好O(m)地慢慢转移:
int odd=0,cnt=0;
for(register int l=0;l<m;l++)
if((j|k)>>l&1) odd|=cnt,cnt=0;
else cnt^=1;
if(odd|cnt) continue;
所以我们得到了一个时间复杂度为O(NM * 2^M * 2^M)=O(NM * 4^M)的算法。
#include<iostream>
#include<cstring>
#include<cstdio>
#define maxm 5
#define maxn 10001
using namespace std;
int dp[maxn][1<<maxm];
int n,m,p;
inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int main(){
n=read(),m=read(),p=read();
dp[0][0]=1;
for(register int i=1;i<=n;i++){
for(register int j=0;j<1<<m;j++){
for(register int k=0;k<1<<m;k++){
if(j&k) continue;
int odd=0,cnt=0;
for(register int l=0;l<m;l++)
if((j|k)>>l&1) odd|=cnt,cnt=0;
else cnt^=1;
if(odd|cnt) continue;
(dp[i][j]+=dp[i-1][k])%=p;
}
}
}
printf("%d\n",dp[n][0]);
return 0;
}
这个复杂度足够通过本题了。
对于这个算法有个小小的优化:
设函数f(j,k)=j|k,不难发现其定义域大小为2M2=4M而值域大小只有2M,所以我们对于一个f(j,k)其实重复算了2^M次。所以我们可以预处理出所有f(j,k):
for(register int i=0;i<1<<m;i++){
int odd=0,cnt=0;
for(register int j=0;j<m;j++)
if(i>>j&1) odd|=cnt,cnt=0;
else cnt^=1;
even[i]=odd|cnt?0:1;
}
然后在dp的过程中:
dp[0][0]=1;
for(register int i=1;i<=n;i++){
for(register int j=0;j<1<<m;j++){
for(register int k=0;k<1<<m;k++){
if(!(j&k)&&even[j|k]) (dp[i][j]+=dp[i-1][k])%=p;
}
}
}
可以把时间复杂度优化成O(N * 4^M+M * 2^M)
Zju1100 Mondriaan的更多相关文章
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- POJ 题目2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 13519 Accepted: 787 ...
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- POJ2411 Mondriaan's Dream
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- 状压DP POJ 2411 Mondriaan'sDream
题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
- poj 2411 Mondriaan's Dream(状态压缩dp)
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- POJ2411 Mondriaan's Dream(状态压缩)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 15295 Accepted: 882 ...
随机推荐
- Java源码赏析(六)Class<T> 类
目的 Class 类是每一个程序员都必须了解的,也是使用反射机制的基础. 这篇文章将Class 类的公共方法大致介绍了一遍(省略了安全.枚举.断言.注解相关代码). 代码 package java.l ...
- xss未看完的文章
https://blog.csdn.net/fen0707/article/details/8596888 XSS介绍与攻击 http://xss.fbisb.com/w ...
- .net core 3.1 过滤器(Filter) 与中间件与AOP面向切面 与拦截器及其应用
Filter(过滤器) 总共有五种,Authorization Filter,Resource Filter,Exception Filter,Action Filter,Result Filter ...
- HTTP Error 405.0 - Method Not Allowed 无法显示您正在查找的页面,因为使用了无效方法(HTTP 谓词)。
将submit改成button即可 因为触发了form表单
- 写一个nginx.conf方便用于下载某个网页的所有资源
写一个nginx.conf方便用于下载某个网页的所有资源 worker_processes 1; events { worker_connections 1024; } http { include ...
- PPT技术干货1(上)——设计审美
序言 PPT直接反映了一个人的能力和态度,PPT能直接反映出老板最看重的4个关键能力: 逻辑思维:全局思考,洞察关键 数据思维:数据分析,指导决策 设计思维:美观大方,彰显专业 工作效率:效率高,出活 ...
- Winform Dock顺序调整
在布局的时候,当一个窗体内有多个控件使用了Dock属性来布局,Dock顺序的调整: 最近被.net winform中的控件布局搞困惑了,由于控件都是使用Dock方式的,操作起来也是比较方便,如果最大化 ...
- 浅谈IAT加密原理及过程
上一次做完代码段加密后,又接触到了新的加密方式:IAT加密 IAT加密是通过隐藏程序的导入表信息,以达到增加分析程序的难度.因为没有导入表,就无法单纯的从静态状态下分析调用了什么函数,动态调试时,也无 ...
- Ubuntu安装最新的SlickEdit软件--破解教程
最近主要工作系统转到LInux上面来了,Slickedit的安装破解也费了些事,今天将过程整理一下做个记录. 说明:SlickEdit pro V21.03 Linux 64位实测可用,MAC实测可用 ...
- TurtleBot 3 & 2i ROS开源实验平台
TurtleBot 3 & 2i ROS开源实验平台,全球更受欢迎的ROS平台. TurtleBot是ROS标准平台机器人,在全球开发人员和学生中深受欢迎.其有3个版本: TurtleBot1 ...