题目描述:

样例:

实现解释:

一道结合了火箭发射的贪心题目

知识点:

贪心,优先队列

题目分析:

根据题目描述可知,延迟后时间是正常推进的,也就是假设共有n个火箭,推迟k小时。则在到达k+1小时时,每过一个小时只要火箭没发射完都会有k(如果k大于n就是有剩余数量)个火箭会遭受延迟的损失,显然这是必然的(因为到达k小时前的损失都已经确定了,无法改变)。

那么依据题意只要使得每次这k个火箭的损失最小即可,而如何最小:让其中单位时间损失最大的火箭发射即可,这样一定比发射其他火箭的损失要小。

于是便可得出贪心的状态转移方程:

cost[i] = cost[i-1]+sum(sum既是此时除去最大损失火箭的总损失量)

sum的获取可以利用排序实现,不过考虑到时间问题,还是用优先队列进行最好,边输入边处理便可解决,具体实现可参考完整代码,内含注释。

难点:

即如何获得当前状态的sum,常规来说只需去除损失最大的火箭然后遍历剩余的相加即可。一次优化:利用sum数组和out变量提前存储避免遍历,不过还是需要排序;二次优化:利用优先队列获取最大值,免去排序。

完整代码:

优先队列版(过了):

#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
//考虑到数据范围,这里需要用long long进行储存
//表面上看起来没有超范围,但是延迟时间是需要相乘的,因此还是会超过
priority_queue<long long> pq;
long long sum[];
long long cost[];
int main()
{
ios::sync_with_stdio(false);
int n,k,temp;
long long p;//中间值记录每个火箭的损失
long long out;//统计发射出去火箭的损失和
while(cin >> n >> k)
{
memset(cost,,(n+k+)*sizeof(long long));
//按需初始化,减少时间消耗
sum[] = ;//sum需要用到前一个值,此处设0
out = ;
for(int i = ;i<=k+n;i++)
{
if(i <= n)
{
cin >> p;
sum[i] = sum[i-]+p;
pq.push(p);
}
//错误判断1:if(i <= k) if(i <= n) cost[k]+=(k-i+1)*p;
//这种情况第二个else会被编译器认为是i <= n的补集,会出错 //错误判断2:if(i <= k&&i <= n) cost[k]+=(k-i+1)*p;
//这种情况会导致i > k但i <= n的情况计算被忽略
//即延迟时间小于最后一个发射时间时 if(i <= k)//还没到延迟时间时依据p计算延迟时间时这个火箭的损失
{
if(i <= n) cost[k]+=(k-i+)*p;
//注意火箭只有n个,所以需要判断下
}
else//此时说明延迟已过,需要发射火箭
{
temp = i>n?n:i;
//当i>n则应该temp=n以保证每次获取到的为损失的总和
//这样减去已经发射火箭的损失和就是这次发射的总损失
out += pq.top();//选择单位损失最高的火箭发射
pq.pop();
cost[i] = cost[i-] + sum[temp] - out;
//i小时的损失等于i-1小时损失加上这一小时的新损失
//当前时间本应发射的总损失减去已经发射的总损失即是延迟火箭新产生的总损失 //out去除形式,本质相同,只是直接在sum处去除(影响也可保留)
//不过没有out好理解
// temp = i>n?n:i;
// sum[temp] -= pq.top();
// pq.pop();
// cost[i] = cost[i-1] + sum[temp];
}
}
cout << cost[k+n] << '\n';
//延迟时间和总发射时间之和即是所有火箭发射完全的时间
}
return ;
}

数组排序版(TLE):

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
long long p[];
long long sum[];
//long long cost[1000010];
int main()
{
ios::sync_with_stdio(false);
int n,k;
int temp;
long long out;
while(cin >> n >> k)
{
long long cost[n+k+];
memset(cost,,sizeof(cost));
sum[] = ;
for(int i = ;i<=n;i++)
{
cin >> p[i];
sum[i] = sum[i-]+p[i];
if(i <= k) cost[k]+=(k-i+)*p[i];
}
out = ;
for(int i = ;i<=n;i++)
{
temp = k+i;
if(temp > n) temp = n;
sort(p+,p+temp+);
out += p[temp];
p[temp] = ;
cost[k+i] = cost[k+i-] + sum[temp] - out;
//此时out不能省略了,因为sum已经确定了
}
cout << cost[k+n] << '\n';
}
return ;
}

  

题解:2018级算法第三次上机 C3-Zexal的浩瀚星辰的更多相关文章

  1. 题解:2018级算法第五次上机 C5-图2

    题目描述: 样例: 实现解释: 所有结点对最短路径的板子题 知识点: 寻找所有结点对最短路径,动态规划 坑点: 无坑,注意建边即可 使用的算法为floyd算法 按照程序顺序解释如下: 首先建图,以邻接 ...

  2. 题解:2018级算法第四次上机 C4-最小乘法

    题目描述: 样例: 实现解释: 和字符串处理结合的动态规划,个人认为比较难分析出状态转移方程,虽然懂了之后挺好理解的 知识点: 动态规划,字符串转数字 题目分析: 首先按照最基础:依据题意设计原始dp ...

  3. 题解:2018级算法第六次上机 C6-不Nan的过河

    题目描述: 样例: 实现解释: 一道因为没排序做了一个小时没做出来的二分答案模板题(手动呲牙) 知识点: 二分答案,最大值最小化 坑点: 排序,judge(mid)函数内计数的实现 其实从最长一步的最 ...

  4. 题解:2018级算法第六次上机 C6-危机合约

    题目描述 样例: 实现解释: 没想到你也是个刀客塔之二维DP 知识点: 动态规划,多条流水线调度?可以看做一种流水线调度 坑点: 输入内容的调整(*的特殊判定),开头结尾的调整策略 从题意可知,要做的 ...

  5. 题解:2018级算法第四次上机 C4-商人卖鱼

    题目描述: 样例: 实现解释: 需要简单分析的贪心题 知识点: 贪心,自定义排序,提前存储 题目分析: 卖鱼,鱼卖出去需要时间,鱼没被卖出去之前需要吃饲料 则有,如果卖a鱼的话b鱼会吃饲料c份,而卖b ...

  6. 2016级算法第三次上机-G.Winter is coming

    904 Winter is coming 思路 难题.首先简化问题, \(n\) 个0与 \(m\) 个1排成一列,连续的0不能超过x个,连续的1不能超过y个,求排列方法数. 显然会想到这是动态规划. ...

  7. 2016级算法第三次上机-C.AlvinZH的奇幻猜想——三次方

    905 AlvinZH的奇幻猜想--三次方 思路 中等题.题意简单,题目说得简单,把一个数分成多个立方数的和,问最小立方数个数. 脑子转得快的马上想到贪心,从最近的三次方数往下减,反正有1^3在最后撑 ...

  8. 2016级算法第三次上机-B.Bamboo和巧克力工厂

    B Bamboo和巧克力工厂 分析 三条流水线的问题,依然是动态规划,但是涉及的切换种类比较多.比较易于拓展到n条流水线的方式是三层循环,外层是第k个机器手,里面两层代表可切换的流水线 核心dp语句: ...

  9. 2016级算法第三次上机-F.ModricWang的导弹防御系统

    936 ModricWang的导弹防御系统 思路 题意即为:给出一个长度为n的序列,求出其最长不降子序列. 考虑比较平凡的DP做法: 令\(nums[i]\) 表示这个序列,\(f[x]\) 表示以第 ...

随机推荐

  1. DML_Data Modification_UPDATE

    DML_Data Modification_UPDATE写不进去,不能专注了...... /* */ ------------------------------------------------- ...

  2. 开窗函数_ROW_NUMBER() / RANK() / DENSE_RANK() / NTILE() ------4个排名函数训练_1

    排名函数(训练,其实从SQL2005时就已经被引入) /*SQL Server 2012从零开始学_7.8  排序函数*/ --DROP TABLE fruits GO Create table fr ...

  3. Node.js环境安装

    为其他使用先小小的接触这个环境,如不出意外,未来的一些时候抽时间会系统的学习element-ui, JavaScript, vue, node.js, 稍后也做个简易的ACE Editor体验一下 1 ...

  4. C Primer Plus(三)

    重读C Primer Plus ,查漏补缺 重读C Primer Plus,记录遗漏的.未掌握的.不清楚的知识点 文件输入/输出 1.fgets函数在读取文件内容时会将换行符读入,但gets不会,fp ...

  5. controller场景设计

    场景设计模型-手动场景快增长慢增长指定运行次数组模式 快增长模型:就是压力瞬间启动并且达到最大,通常用于秒杀的场景 loadrunner设置:瞬间启动,瞬间停止 慢增长:压力按照设定的规则慢慢的添加, ...

  6. Android学习笔记长按事件的处理

    常见的长按事件 代码示例: @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedIns ...

  7. Spring Boot2+Resilience4j实现容错之Bulkhead

    Resilience4j是一个轻量级.易于使用的容错库,其灵感来自Netflix Hystrix,但专为Java 8和函数式编程设计.轻量级,因为库只使用Vavr,它没有任何其他外部库依赖项.相比之下 ...

  8. js语法基础入门(1.2)

    1.4.查找元素的方法 1.4.1.查找元素的方法 JavaScript可以去操作html元素,要实现对html元素的操作,首选应该找到这个元素,有点类似于css中的选择器 html代码: <d ...

  9. LeetCode60. 第k个排列

    解法一:用next_permutation()函数,要求第k个排列,就从"123...n"开始调用 k - 1 次 next_permutation()函数即可. class So ...

  10. 问题 C: 最短路径

    问题 C: 最短路径 在洛谷上刷最短路的题然后被老师拉回去做算法笔记上面的题... 拿到这道题,先确定所有路径唯一,然后是无向边,那么对于边权处理,直接赋值为2的k次方就可以了,然后直接跑最短路. 这 ...