【BubbleCup X】F:Product transformation
按照题解的规律,首先能看出前面每个数幂次的性质。
然后发掘约数的性质
#include<bits/stdc++.h>
const int N=;
typedef long long ll;
using namespace std;
int n,m,a,Q,yql,ans[N],fac[N],inv[N];
inline int C(int n,int k){
return 1LL*fac[n]*inv[k]%yql*inv[n-k]%yql;
}
inline int fpow(int x,int p,int yql){
int ans=;
for(;p;p>>=,x=1LL*x*x%yql)if(p&)ans=1LL*ans*x%yql;
return ans;
}
inline int read(){
int f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int main(){
n=read();m=read();a=read();Q=read();
int now=;
for(int i=;;i++){
now=1LL*now*a%Q;if(now==){yql=i;break;}
}
fac[]=;for(int i=;i<=m;i++)fac[i]=(1LL*fac[i-]*i)%yql;
inv[m]=fpow(fac[m],yql-,yql);
for(int i=m-;i>=;i--)inv[i]=1LL*inv[i+]*(i+)%yql;
int lim=min(n,m+);
for(int i=;i<=lim;i++)ans[n-i+]=(ans[n-i+]+C(m,i-))%yql;
for(int i=n-lim;i;i--)ans[i]=ans[i+];
//for(int i=1;i<=n;i++)printf("%d ",ans[i]);puts("");
for(int i=;i<=n;i++)printf("%d ",fpow(a,ans[i],Q));
}
【BubbleCup X】F:Product transformation的更多相关文章
- 【BubbleCup X】D. Exploration plan
这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...
- 【BubbleCup X】G:Bathroom terminal
一个hash的题 对?出现位置直接暴力枚举,然后hash判断下,扔进map里 cf的评测机跑的针tm块 #include<bits/stdc++.h> ; ; typedef long l ...
- 【CodeForces 604B】F - 一般水的题1-More Cowbe
Description Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter ...
- 【做题】CF119D. String Transformation——KMP
题意:有两个字符串\(a,b\),下标从\(0\)开始.求数对\((i,j)\)满足\(a[i+1:j] + r(a[j:n]) + r(a[0:i+1]) = b\),其中\(r(s)\)表示字符串 ...
- 【AtCoder ARC076】F Exhausted? 霍尔定理+线段树
题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max( ...
- 【C语言】%f,%lf,%3.1f
在输出时应注意变量类型,使用如%3.1时会默认四舍五入.
- 【PAT甲级】1009 Product of Polynomials (25 分)
题意: 给出两个多项式,计算两个多项式的积,并以指数从大到小输出多项式的指数个数,指数和系数. trick: 这道题数据未知,导致测试的时候发现不了问题所在. 用set统计非零项时,通过set.siz ...
- 【新特性速递】F.doPostBack的说明文档
FineUIPro/Mvc/Core的下个版本(v6.1.0),我们对客户端JS函数 F.doPostBack 进行了增强,并增加说明文档. 如果你还没有查阅过FineUI的客户端文档,可以收藏下这个 ...
- 【openjudge】【递推】例3.4 昆虫繁殖
[题目描述] 科学家在热带森林中发现了一种特殊的昆虫,这种昆虫的繁殖能力很强.每对成虫过x个月产y对卵,每对卵要过两个月长成成虫.假设每个成虫不死,第一个月只有一对成虫,且卵长成成虫后的第一个月不产卵 ...
随机推荐
- AtCoder Regular Contest 083 C: Sugar Water
题意 给你一个空杯子,有4种操作: 操作1 加100a克的水 操作2 加100b克的水 操作3 加c克的糖 操作4 加d克的糖 糖的质量不能超过水的质量e/100 糖和水的总质量不能超过f 糖的质量不 ...
- 使用Appium上传/下载文件(push文件、pull文件)
package com.lx.class1; import java.io.File; import java.io.IOException; import java.net.URL; import ...
- 【JavaScript】checkBox的多选行<tr>信息获取
页面的列表table显示(后台model.addAttribute("page", page);传来page信息,page通过foreach标签迭代展示表格数据): <!-- ...
- windows200364位iis6 php环境搭建
最近接一个小活,就是帮着部署个php网站,服务器是window2003,iis6.之前在我自己得服务器上已经搭建过php环境,区别是我的服务器windows2012,而对方的是windows 2003 ...
- Going in Cycle!! UVA - 11090(二分+判断环路 )
题意: 给定一个n个点m条边的加权有向图,求平均权值最小的回路 解析: 首先肯定是想到找出环路 然后..呵..呵..呵呵... 显然不现实!! 二分大法好 ....去猜结果 然后带入验证 ...真是 ...
- [SCOI2016]幸运数字 线性基
题面 题面 题解 题面意思非常明确:求树上一条链的最大异或和. 我们用倍增的思想. 将这条链分成2部分:x ---> lca , lca ---> y 分别求出这2个部分的线性基,然后合并 ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- NOIP2017 考前汇总
时隔一年,相比去年一无所知的自己,学到了不少东西,虽然还是很弱,但也颇有收获[学会了打板QAQ] 现在是2017.11.9 21:10,NOIP2017的前两天晚上,明天就要出发,做最后的总结 N ...
- python基础(4)
条件判断和循环 条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if ag ...
- 网络编程----socket介绍、基于tcp协议的套接字实现、基于udp协议的套接字实现
一.客户端/服务器架构(C/S架构) 即C/S架构,包括: 1.硬件C/S架构(打印机) 2.软件C/S架 ...