K-modes聚类算法MATLAB
K-modes算法主要用于分类数据,如 国籍,性别等特征。
距离使用汉明距离,即有多少对应特征不同则距离为几。
中心点计算为,选择众数作为中心点。
主要功能:
随机初始化聚类中心,计算聚类。
选择每次聚类次数,选择最佳聚类初始化。
kmodes.m代码
function [cx,cost] = kmodes(K,data,num)
% 生成将data聚成K类的最佳聚类
% K为聚类数目,data为数据集,num为随机初始化次数
[cx,cost] = kmodes1(K,data);
for i = :num
[cx1,min] = kmodes1(K,data);
if min<cost
cost = min;
cx = cx1;
end
end
end function [cx,cost] = kmodes1(K,data)
% 把分类数据集data聚成K类
% [cx,cost] = kmeans(K,data)
% K为聚类数目,data为数据集
% cx为样本所属聚类,cost为此聚类的代价值
% 选择需要聚类的数目 % 随机选择聚类中心
centroids = data(randperm(size(data,),K),:);
% 迭代聚类
centroids_temp = zeros(size(centroids));
num = ;
while (~isequal(centroids_temp,centroids)&&num<)
centroids_temp = centroids;
[cx,cost] = findClosest(data,centroids,K);
centroids = compueCentroids(data,cx,K);
num = num+;
end
% cost = cost/size(data,); end function [cx,cost] = findClosest(data,centroids,K)
% 将样本划分到最近的聚类中心
cost = ;
n = size(data,);
cx = zeros(n,);
for i = :n
% 汉明距离
[M,I] = min(sum((data(i,:)~=centroids)'));
cx(i) = I;
cost = cost+M;
end
end function centroids = compueCentroids(data,cx,K)
% 计算新的聚类中心
centroids = zeros(K,size(data,));
for i = :K
% 众数为聚类中心
centroids(i,:) = mode(data(cx==i,:));
end
end
Main.m
% 生成分类数据集
data = randi(,,);
% 生成最佳聚类
K = ;
[cx,cost] = kmodes(K,data,);
执行Main.m,返回聚类的代价值。与聚类结果。cx存了每个样本点属于第几类。
K-modes聚类算法MATLAB的更多相关文章
- 密度峰值聚类算法MATLAB程序
密度峰值聚类算法MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC) 数据见:MATL ...
- k均值聚类算法原理和(TensorFlow)实现
顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...
- K均值聚类算法
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个 ...
- 机器学习实战---K均值聚类算法
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...
- K均值聚类算法的MATLAB实现
1.K-均值聚类法的概述 之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这 ...
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- K-medodis聚类算法MATLAB
国内博客,上介绍实现的K-medodis方法为: 与K-means算法类似.只是距离选择与聚类中心选择不同. 距离为曼哈顿距离 聚类中心选择为:依次把一个聚类中的每一个点当作当前类的聚类中心,求出代价 ...
- K-means聚类算法MATLAB
以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类.函数名myKmeans.m 自 ...
- 谱聚类算法—Matlab代码
% ========================================================================= % 算 法 名 称: Spectral Clus ...
随机推荐
- excel鼠标拖选慢shift选择快的问题
今天遇到个惊天大坑,关于excel的,最近,一直在调查这个东西,刚开始真的是毫无头绪,反正现在就是excel的值的copy会偶尔慢,慢的情况也是不明白,就是稀里糊涂的调查. 刚开始连100%再现这个b ...
- imx6 socketcan 发送问题
参考cansend 的方法进行发送can 数据. cansend 的生成,请查考:http://www.cnblogs.com/chenfulin5/p/6797756.html cansend 代码 ...
- netctl
netctl is a CLI-based tool used to configure and manage network connections via profiles. It is a na ...
- jQuery:(一)jQuery简介
一.jQuery简介jQuery由美国人John Resig于2006年创建jQuery是目前最流行的JavaScript程序库,它是对JavaScript对象和函数的封装. 二.jQuery的优势1 ...
- jquery ajax生成Select
function DropDownList(url, domId, defaultValue) { /// <summary> /// ajax生成select /// ...
- 下载Qt安装包
http://download.qt.io/archive/qt/ 找到下载页面,选择View All Downloads,找你需要的版本
- ORA-00972: 标识符过长
若是拼接成的sql语句,请查找传递参数时字符型字段是否两边少了引号.
- GitHub Pages站点官方宣布开始使用HTTPS
导读 数百万人依靠GitHub Pages,将其作为他们的网站主机,除此之外,还有数百万人每天访问这些网站.为了更好地保护到GitHub Pages站点的通讯,也为了鼓励在因特网上更广泛地采用HTTP ...
- [SCOI2010]传送带[三分]
//point(AB)->point(CD) 距离满足下凸性,用三分套三分实现 #include<cmath> #include<cstdio> #include< ...
- 【BZOJ1070】[SCOI2007]修车 费用流
[BZOJ1070][SCOI2007]修车 Description 同一时刻有N位车主带着他们的爱车来到了汽车维修中心.维修中心共有M位技术人员,不同的技术人员对不同的车进行维修所用的时间是不同的. ...