【最短路径】 SPFA算法优化
首先先明确一个问题,SPFA是什么?(不会看什么看,一边学去,传送门),SPFA是bellman-ford的队列优化版本,只有在国内才流行SPFA这个名字,大多数人就只知道SPFA就是一个顶尖的高效算法,却不知道还能继续优化,这个优化虽然也没有你想的那么麻烦,只不过多了几个判断语句罢了,5分钟就能学会,但是这也得运用到分类讨论,其实SPFA有三种优化方法,效果并不是很明显。

这三个测试点通过情况所对应的分别是SPFA的三种优化方法,这个时间也是因题而异,像这道题,效果并不好,但是看别人写的博客,他们提交了一道数据对于优化后的SPFA比较有利,测试时间差距能看出来,但是效果也就是减少十几毫秒而已,但是也是有的,万一题目会卡这十几毫秒呢?
1. SLF优化
还记得吗?在我们学SPFA的时候,要把每一个入队的点插入到队尾,可是有些时候这个点作为队尾没有作为队头效率高,因为这个点有时放在队首就能直接用,那么什么样的点作为队首更好呢?当然是dis值越小越可能刷新其它dis值,所以对比当前元素与对首元素的dis值,如果当前元素的dis值更小,那么把当前元素插入到队首,否则插入到队尾。如果你不是很了解队列,或者还是现学的,一定会纳闷,不就能q.push( );吗?哪来的队首呢?此时queue<int>q;应该改为deque<int>q;双端队列,就有q.push_front( );和q.push_back( );了。
代码如下(红色处为优化对应的新增代码):
void SPFA()
{
memset(dis,inf,sizeof(dis));
deque<int>q;
q.push_back();dis[]=;vis[]=;
while(q.size())
{
x=q.front();q.pop_front();vis[x]=;
for(int i=head[x];i;i=map[i].next)
{
s=map[i].to;
if(dis[s]>dis[x]+map[i].value)
{
dis[s]=dis[x]+map[i].value;
if(vis[s]==)
{
if(dis[s]<dis[q.front()]) q.push_front(s);
else q.push_back(s);
vis[s]=;
}
}
}
}
}
2. LLL优化
如果懂了上一个SLF优化,那么这个LLL优化就很好理解了,SLF表示小的优先,LLL表示大的最后,那么什么样的的dis值是大的呢?难道还和队首元素比较吗?当然不是,是于队列的平均数来比较,如果大于这个平均数就放到最后。
代码如下(红色处为优化对应的新增代码):
void SPFA()
{
memset(dis,inf,sizeof(dis));
queue<int>q;
q.push();dis[]=;vis[]=;
while(q.size())
{
p=q.front();q.pop();
if(dis[p]*cnt_2>sum)
{
q.push(p);
continue;
}
sum-=dis[p];cnt_2--;
vis[p]=;
for(int i=head[p];i;i=map[i].next)
{
s=map[i].to;
if(dis[s]>dis[p]+map[i].value)
{
dis[s]=dis[p]+map[i].value;
if(vis[s]==)
{
vis[s]==;
q.push(s);
cnt_2++;
sum+=dis[s];
}
}
}
}
}
2. SLF+LLL优化
这个就很简单直接了,把两个新增代码搓一块了就行。
代码如下(红色处为优化对应的新增代码):
void SPFA()
{
memset(dis,inf,sizeof(dis));
deque<int>q;
q.push_back();dis[]=;vis[]=;
while(q.size())
{
p=q.front();q.pop_front();
if(dis[p]*cnt_2>sum)
{
q.push_back(p);
continue;
}
sum-=dis[p];cnt_2--;
vis[p]=;;
for(int i=head[p];i;i=map[i].next)
{
s=map[i].to;
if(dis[s]>dis[p]+map[i].value)
{
dis[s]=dis[p]+map[i].value;
if(vis[s]==)
{
vis[s]==;
if(dis[s]<dis[q.front()]) q.push_front(s);
else q.push_back(s);
cnt_2++;
sum+=dis[s];
}
}
}
}
}
怎么样,你学会了吗?
【最短路径】 SPFA算法优化的更多相关文章
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- 最短路径——SPFA算法
一.前提引入 我们学过了Bellman-Ford算法,现在又要提出这个SPFA算法,为什么呢? 考虑一个随机图(点和边随机生成),除了已确定最短路的顶点与尚未确定最短路的顶点之间的边,其它的边所做的都 ...
- 最短路径----SPFA算法
求最短路径的算法有许多种,除了排序外,恐怕是ACM界中解决同一类问题算法最多的了.最熟悉的无疑是Dijkstra,接着是Bellman-Ford,它们都可以求出由一个源点向其他各点的最短路径:如果我们 ...
- 图的最短路径-----------SPFA算法详解(TjuOj2831_Wormholes)
这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该 ...
- 洛谷P3371单源最短路径SPFA算法
SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...
- SPFA算法优化
前言 \(SPFA\) 通常在稀疏图中运行效率高于 \(Dijkstra\) ,但是也容易被卡. 普通的 \(SPFA\) 时间复杂度为 \(O(km)\) ,其中 \(k\) 是一条边松弛其端点点的 ...
- 最短路径SPFA算法(邻接表存法)
queue <int> Q; void SPFA (int s) { int i, v; for(int i=0; i<=n; i++) dist[i]=INF; //初始化每点i到 ...
- 【最短路径】 SPFA算法
上一期介绍到了SPFA算法,只是一笔带过,这一期让我们详细的介绍一下SPFA. 1 SPFA原理介绍 SPFA算法和dijkstra算法特别像,总感觉自己讲的不行,同学说我的博客很辣鸡,推荐一个视频讲 ...
- luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法
P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...
随机推荐
- 2.aop中几个注解的含义
参考地址:http://elim.iteye.com/blog/2395255
- VS调试程序快捷键和系统快捷键
调试程序快捷键 编译程序:F7 运行程序:ctrl + F5 打断点:F9 运行到断点位置:F5 单步执行:F10 单步进入函数:F11 结束调试:shift+F5 注释代码:ctrl+k,ctrl+ ...
- js 给指定ID赋值
js 给指定ID赋值 <script language="javascript" type="text/javascript"> document. ...
- Vue 脱坑记
问题汇总 Q:安装超时(install timeout) 方案有这么些: cnpm : 国内对npm的镜像版本 /* cnpm website: https://npm.taobao.org/ */ ...
- koa源码阅读[1]-koa与koa-compose
接上次挖的坑,对koa2.x相关的源码进行分析 第一篇.不得不说,koa是一个很轻量.很优雅的http框架,尤其是在2.x以后移除了co的引入,使其代码变得更为清晰. express和koa同为一批人 ...
- Web安全的三个攻防姿势
原文地址:https://segmentfault.com/a/1190000011601837 作者: zwwill_木羽 关于Web安全的问题,是一个老生常谈的问题,作为离用户最近的一层,我们大前 ...
- 宝塔Linux面板新手安装教程【转】
一.使用远程连接软件 (如 Putty.XShell) 连接你的Linux服务器,本教程以 Putty 为例. 1.动 Putty.exe 程序,进入 Putty 主界面. 2.在 Host Name ...
- Lempel-Ziv algorithm realization
Lempel-Ziv 复杂度程序 随着人们对非线性方法的分析越加深入,他们发现,虽然关联维度和最大李雅谱诺夫指数在分析脑电时具有一定的帮助,但是它们对数据的依赖性太强,对干扰和噪 声太敏感,而且要得到 ...
- Firefox缓存文件夹位置设置及清除缓存方法
地址栏敲入: about:config, 新建一个"browser.cache.disk.parent_directory", 并设置为你要的缓存文件夹, 例如: "F ...
- Android检测富文本中的<img标签并实现点击效果
本文旨在:通过点击一张图片Toast输出位置与url链接. 闲话少说,实现原理大概是酱紫的::通过正则表达式检测富文本内的图片集合并获取url,在src=“xxx” 后面添加 onclick方法,至于 ...