题目描述

BaoBao has just found a rooted tree with n vertices and (n-1) weighted edges in his backyard. Among the vertices, m of them are red, while the others are black. The root of the tree is vertex 1 and it’s a red vertex.
Let’s define the cost of a red vertex to be 0, and the cost of a black vertex to be the distance between this vertex and its nearest red ancestor.
Recall that

  • The length of a path on the tree is the sum of the weights of the edges in this path.
  • The distance between two vertices is the length of the shortest path on the tree to go from one vertex to the other.
  • Vertex u is the ancestor of vertex v if it lies on the shortest path between vertex v and the root of the tree (which is vertex 1 in this problem).

As BaoBao is bored, he decides to play q games with the tree. For the i-th game, BaoBao will select ki vertices vi,1, vi,2, . . . , vi,ki on the tree and try to minimize the maximum cost of these ki vertices by changing at most one vertex on the tree to a red vertex.
Note that

  • BaoBao is free to change any vertex among all the n vertices to a red vertex, NOT necessary among the ki vertiecs whose maximum cost he tries to minimize.
  • All the q games are independent. That is to say, the tree BaoBao plays with in each game is always the initial given tree, NOT the tree modified during the last game by changing at most one vertex.

Please help BaoBao calculate the smallest possible maximum cost of the given ki vertices in each game after changing at most one vertex to a red vertex.

输入

There are multiple test cases. The first line of the input is an integer T, indicating the number of test cases. For each test case:
The first line contains three integers n, m and q (2≤m≤n≤105, 1≤q≤2×105), indicating the size of the tree, the number of red vertices and the number of games.
The second line contains m integers r1, r2, . . . , rm (1 = r1 < r2 <...< rm≤n), indicating the red vertices.
The following (n-1) lines each contains three integers ui, vi and wi (1≤ui, vi≤n, 1≤wi≤109),indicating an edge with weight wi connecting vertex ui and vi in the tree.
For the following q lines, the i-th line will first contain an integer ki (1≤ki≤n). Then ki integers vi,1, vi,2, . . . , vi,ki follow (1≤vi,1 < vi,2 < ... < vi,ki≤n), indicating the vertices whose maximum cost BaoBao has to minimize.
It’s guaranteed that the sum of n in all test cases will not exceed 106, and the sum of ki in all test cases will not exceed 2×106.

输出

For each test case output q lines each containing one integer, indicating the smallest possible maximum cost of the ki vertices given in each game after changing at most one vertex in the tree to a red vertex.

样例输入

2
12 2 4
1 9
1 2 1
2 3 4
3 4 3
3 5 2
2 6 2
6 7 1
6 8 2
2 9 5
9 10 2
9 11 3
1 12 10
3 3 7 8
4 4 5 7 8
4 7 8 10 11
3 4 5 12
3 2 3
1 2
1 2 1
1 3 1
1 1
2 1 2
3 1 2 3

样例输出

4
5
3
8
0
0
0

提示

The first sample test case is shown above. Let’s denote C(v) as the cost of vertex v.
For the 1st game, the best choice is to make vertex 2 red, so that C(3) = 4, C(7) = 3 and C(8) = 4. So the answer is 4.
For the 2nd game, the best choice is to make vertex 3 red, so that C(4) = 3, C(5) = 2, C(7) = 4 and C(8) = 5. So the answer is 5.
For the 3rd game, the best choice is to make vertex 6 red, so that C(7) = 1, C(8) = 2, C(10) = 2 and C(11) = 3. So the answer is 3.
For the 4th game, the best choice is to make vertex 12 red, so that C(4) = 8, C(5) = 7 and C(12) = 0.
So the answer is 8.

 
二分总是过不了呀呀呀呀
自闭了啊啊啊啊 
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int T,n,m,q,cnt,tot;
bool red[N];
int last[N],pos[N],f[N],rmq[N],mm[N],dp[N][],a[N];
ll cost[N],cost_t[N];
struct tree{
int v,w,nex;
}t[N];
bool cmp(int a,int b)
{
return cost_t[a]>cost_t[b];
}
void add(int x,int y,int z)
{
cnt++;
t[cnt].v=y;
t[cnt].nex=last[x];
last[x]=cnt;
t[cnt].w=z;
}
void dfs(int x,int fa,int deep,ll dis,ll dis1)
{
if (red[x]) dis1=;
cost[x]=dis; cost_t[x]=dis1;
pos[x]=tot; f[tot]=x; rmq[tot++]=deep;
for (int i=last[x];i;i=t[i].nex)
{
if (t[i].v==fa) continue;
dfs(t[i].v,x,deep+,dis+t[i].w,dis1+t[i].w);
f[tot]=x;
rmq[tot++]=deep;
}
}
void ST(int n)
{
mm[]=-;
for (int i=;i<=n;i++)
{
mm[i]=((i&(i-))==) ? mm[i-]+:mm[i-];
dp[i][]=i;
}
for (int j=;j<=mm[n];j++)
for (int i=;i+(<<j)-<=n;i++)
dp[i][j]=rmq[dp[i][j-]]<rmq[dp[i+(<<(j-))][j-]] ? dp[i][j-] : dp[i+(<<(j-))][j-];
}
int query(int a,int b)
{
a=pos[a]; b=pos[b];
if (a>b) swap(a,b);
int k=mm[b-a+];
int ret=rmq[dp[a][k]]<=rmq[dp[b-(<<k)+][k]] ? dp[a][k] : dp[b-(<<k)+][k];
return f[ret];
}
int main()
{
scanf("%d",&T);
while (T--)
{
int x,y,z,k;
cnt=; tot=;
memset(red,,sizeof(red));
memset(last,, sizeof(last)); scanf("%d%d%d",&n,&m,&q);
for (int i=;i<=m;i++)
{
scanf("%d",&x);
red[x]=true;
}
for (int i=;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
} cost[]=cost_t[]=cost_t[n+]=;
dfs(,-,,,);
ST(tot-); while (q--)
{
scanf("%d",&k);
for (int i=;i<=k;i++) scanf("%d",&a[i]); sort(a+,a++k,cmp); a[k+]=n+; ll ans=cost_t[a[]],lon,maxx=;
int fa=a[];
for (int i=;i<=k;i++)
{
int new_fa=query(fa,a[i]);
int dep1=rmq[pos[fa]],dep2=rmq[pos[new_fa]];
if (dep2<dep1) maxx+=cost[fa]-cost[new_fa]; lon=min(cost_t[a[i]],cost[a[i]]-cost[new_fa]);
maxx=max(maxx,lon); fa=new_fa;
ans=min(ans,max(maxx,cost_t[a[i+]]));
}
printf("%lld\n",ans);
}
}
return ;
}

ACM-ICPC2018 青岛赛区网络预赛-B- Red Black Tree的更多相关文章

  1. ACM-ICPC 2018 青岛赛区网络预赛 J. Press the Button(数学)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4056 题意:有一个按钮,时间倒计器和计数器,在时间[0,t]内, ...

  2. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)

    ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...

  4. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  5. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  6. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  7. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  8. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. 《JavaScript》页面跳转

    window.location.href: <i onclick="window.location.href = '/Form/Form_Write/Index?viewname=Fo ...

  2. Java微笔记(9)

    使用 Date 和 SimpleDateFormat 类表示时间 处理日期和时间的相关数据,可以使用 java.util 包中的 Date 类 使用 Date 类的默认无参构造方法创建出的对象就代表当 ...

  3. 在Asp.Net中使用Redis【本文摘自智车芯官网】

    Redis安装 在安装之前需要获取Redis安装包.在这里我们就不详细介绍安装包的获取了.这里Redis-x64-3.2.100.zip安装包为例通过dos命令取安装.通过dos命令找到安装目录. 在 ...

  4. HTML5+规范:Webview的使用详解

    一.知识点 Webview模块管理应用窗口界面,实现多窗口的逻辑控制管理操作.通过plus.webview可获取应用界面管理对象. 1.方法 1.1.all: 获取所有Webview窗口 Array[ ...

  5. nginx 几个常用的标准模块介绍

    ngx_http_ssl_module(https) 1:指明是否启用的虚拟主机的ssl功能 ssl on | off; 2:指明虚拟主机使用的证书文件 ssl_certificate /usr/lo ...

  6. tftp 简要使用说明

    yum 安装:tftp    tftp-server (2)启动tftp   CentOS 6 service xinetd restart chkconfig tftp on     CentOS ...

  7. 【week10】psp

    项目 内容 开始时间 结束时间 中断时间 净时间 2016/11/19(星期六) 写博客 吉林一日游规格说明书 10:30 15:10 20 260 2016/11/20(星期日) 看论文 磷酸化+三 ...

  8. Matlab里面.M文件不能运行,预期的图像也显示不出来的一个原因

    matlab中function函数的函数名与保存的文件名需要一样: 函数名是GAconstrain,文件名保存成GAconstrain.m,不要使用复制时候产生副本GAconstrain(1).m.

  9. PHP面向对象之重载

    重载技术overloading 重载的基本概念 重载在“通常面向对象语言”中的含义: 是指,在一个类(对象)中,有多个名字相同但形参不同的方法的现象: 类似这样: class   C{ functio ...

  10. 【刷题】洛谷 P4143 采集矿石

    题目背景 ZRQ成功从坍塌的洞穴中逃了出来.终于,他看到了要研究的矿石.他想挑一些带回去完成任务. 题目来源:Zhang_RQ哦对了ZRQ就他,嗯 题目描述 ZRQ发现这里有 \(N\) 块排成一排的 ...