noip2007树网的核
想一下可以发现随便枚举一条直径做就可以了。
核越长越好。于是枚举核的过程可以做到O(n)
然后就是统计答案。
对于每个核最大偏心距肯定是核上面每个点不走核内的点所能走到的最远点的最值。
而且对于核的两端点,距离最远的点肯定是本条直径的端点。
于是我们可以用树形dp,处理出每个直径上的点不走本直径,所能走到的最远点的距离,记为f[]。
然后核每+1,就把当前点f[]塞到单调队列里面。每-1,就把队头弹出。
总共是O(N)。
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <deque>
const int N = 300 + 9;
struct edge{int next,link,w;}es[N*2];
std::deque<int>q;
int dis[N],d_len,len[N],pre[N],p[N],f[N],max_dis[N],ec,son[N],n,s,ans = 0x7fffffff;
bool mark[N];
inline void addedge(const int x,const int y,const int z)
{
es[++ec].next = son[x];
son[x] = ec;
es[ec].link = y;
es[ec].w = z;
}
inline void Addedge(const int x,const int y,const int z){addedge(x,y,z);addedge(y,x,z);}
int bfs(const int s)
{
memset(dis,0,sizeof dis);
memset(pre,0,sizeof pre);
static std::queue<int>q;
for (q.push(s); !q.empty(); ) {
const int u = q.front(); q.pop();
for (int i = son[u]; i; i = es[i].next) {
const int v = es[i].link;
if (v == s || dis[v]) continue;
dis[v] = dis[u] + es[i].w;
pre[v] = u;
q.push(v);
}
}
int res = 1;
for (int i = 1; i <= n; ++i) if (dis[i] > dis[res]) res = i;
return res;
}
void find_diameter()
{
int t,s;
d_len = dis[t = bfs(s = bfs(1))];
while (t) {
mark[t] = true;
p[++p[0]] = t;
len[p[0]] = dis[t] - dis[pre[t]];
t = pre[t];
}
}
void dp(const int u,const int fa)
{
for (int i = son[u]; i; i = es[i].next) {
if (mark[es[i].link] || es[i].link == fa) continue;
dp(es[i].link,u);
f[u] = std::max(f[es[i].link] + es[i].w,f[u]);
}
}
int calc_dis(const int u)
{
memset(f,0,sizeof f);
dp(u,0);
return f[u];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("core.in","r",stdin);
freopen("core.out","w",stdout);
#endif
scanf("%d%d",&n,&s);
for (int i = 1,x,y,z; i < n; ++i) {
scanf("%d%d%d",&x,&y,&z);
Addedge(x,y,z);
}
find_diameter();
for (int i = 1; i <= p[0]; ++i) {
max_dis[i] = calc_dis(p[i]);
//printf("%d\n",max_dis[i]);
}
for (int i = 1,head = 1,sum = 0,front_dis = 0,tail_dis = 0; i <= p[0]; ++i) {
sum += len[i - 1];
tail_dis += len[i - 1];
while (sum > s) {
front_dis += len[head];
sum -= len[head++];
}
while (q.size() && q.front() < head) q.pop_front();
while (q.size() && max_dis[q.back()] <= max_dis[i]) q.pop_back();
q.push_back(i);
if (q.size()) ans = std::min(ans,std::max(max_dis[q.front()],std::max(d_len - tail_dis,front_dis)));
}
printf("%d\n",ans);
}
noip2007树网的核的更多相关文章
- Cogs 97. [NOIP2007] 树网的核 Floyd
题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆ 输入文件:core.in 输出文件:core ...
- [SDOI2011]消防/[NOIP2007] 树网的核
消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的 ...
- NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防
NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...
- noip2007 树网的核
P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 设T=(V, E, W) ...
- 洛谷1099 [NOIP2007] 树网的核
链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...
- NOIP2007 树网的核 [提高组]
题目:树网的核 网址:https://www.luogu.com.cn/problem/P1099 题目描述 设 T=(V,E,W)T=(V,E,W) 是一个无圈且连通的无向图(也称为无根树),每条边 ...
- BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)
要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...
- [BZOJ1999][codevs1167][Noip2007]Core树网的核
[BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...
- BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP
BZOJ_1999_[Noip2007]Core树网的核_单调队列+树形DP Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T ...
随机推荐
- 谈谈"求线段交点"的几种算法(js实现,完整版)
"求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法总结一下, 希望对大家有所帮助. ...
- react 项目遇到的警告集锦
1. 2.
- HDU 5914 Triangle 斐波纳契数列 && 二进制切金条
HDU5914 题目链接 题意:有n根长度从1到n的木棒,问最少拿走多少根,使得剩下的木棒无论怎样都不能构成三角形. 题解:斐波纳契数列,a+b=c恰好不能构成三角形,暴力就好,推一下也可以. #in ...
- NYOJ 1272 表达式求值 第九届省赛 (字符串处理)
title: 表达式求值 第九届省赛 nyoj 1272 tags: [栈,数据结构] 题目链接 描述 假设表达式定义为: 1. 一个十进制的正整数 X 是一个表达式. 2. 如果 X 和 Y 是 表 ...
- 设计模式之Proxy
设计模式总共有23种模式这仅仅是为了一个目的:解耦+解耦+解耦...(高内聚低耦合满足开闭原则) 为什么要使用Proxy? 1.授权机制 不同级别的用户对同一对象拥有不同的访问权利. 2.某个客户端不 ...
- git命令大全【转】
转自:http://www.jqhtml.com/8235.html 初始化本地git仓库(创建新仓库) git init 配置用户名 git config --global user.name &q ...
- 如何在Linux下用C/C++语言操作数据库sqlite3(很不错!设计编译链接等很多问题!)
from : http://blog.chinaunix.NET/uid-21556133-id-118208.html 安装Sqlite3: 从www.sqlite.org上下载Sqlite3.2. ...
- 深入解析Mysql 主从同步延迟原理及解决方案
MySQL的主从同步是一个很成熟的架构,优点为:①在从服务器可以执行查询工作(即我们常说的读功能),降低主服务器压力;②在从主服务器进行备份,避免备份期间影响主服务器服务;③当主服务器出现问题时,可以 ...
- java之正则表达式、日期操作
正则表达式和日期操作 正则表达式简介 正则表达式就是使用一系列预定义的特殊字符来描述一个字符串的格式规则,然后使用该格式规则匹配某个字符串是否符合格式要求. 作用:比如注册邮箱,邮箱有用户名和密码,一 ...
- Delphi 绘图对象
来自:http://blog.csdn.net/lailai186/article/details/8755430 ========================================== ...