HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
What is the expect number of tunnels he go through before he find the exit?
InputFirst line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
OutputFor each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
Sample Output
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
题意:
师傅又被抓了,师傅现在在一个树里。第一天他在1号节点;对于每一个节点,有三种可能,一是被妖怪杀死ki,二是被徒儿救走ei,三是第二天等概率地走到相邻的一个节点。问师傅被救走的天数的期望,不能被救走输出“impossible”。
思路:
上一个题,由于是单调的,没有后续性,所以可以记忆化搜索或者DP解决。这个题存在后续性,举个例子。如果求从s号节点逃出去的期望dp[s],那么dp[s]和s的子节点和s的父节点有关,而欲求s的子节点时,子节点又和父节点s有关。。。
这个时候就需要我们找一个办法来排除后续性。大概就是找一个很牛逼的公式。这个公式本来是和后续性有关,但是公式之间抵消的后续性。
kuangbin的博客例子,先看朴素的公式:
设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);
但是i的结果需要先求父亲和儿子,出现了交叉,无法下手。解决方法是想办法变成只和父亲有关的公式。
设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
具体的:
对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
这下大概是有眉目了。
HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)的更多相关文章
- ZOJ3640Help Me Escape(师傅逃亡系列•一)(数学期望||概率DP)
Background If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at ...
- HDU3853LOOPS (师傅逃亡系列•三)(基础概率DP)
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka sa ...
- 雷达无线电系列(二)经典CFAR算法图文解析与实现(matlab)
一,CFAR基础知识介绍 简介 恒虚警检测技术是指雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术. 前提 由于接收机输出端中肯定存有噪声(包括大气噪声.人为 ...
- Web 前端开发人员和设计师必读文章推荐【系列二十八】
<Web 前端开发精华文章推荐>2014年第7期(总第28期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十七】
<Web 前端开发精华文章推荐>2014年第6期(总第27期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十三】
<Web 前端开发精华文章推荐>2014年第2期(总第23期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十二】
<Web 前端开发精华文章推荐>2014年第一期(总第二十二期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML ...
- 【圣诞特献】Web 前端开发精华文章推荐【系列二十一】
<Web 前端开发精华文章推荐>2013年第九期(总第二十一期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 ...
- Web 前端开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十】
<Web 前端开发精华文章推荐>2013年第八期(总第二十期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 C ...
随机推荐
- 源码安装git
1.安装依赖包 yum install curl-devel expat-devel gettext-devel openssl-devel zlib-devel 2.下载git源码并解压缩 wget ...
- spring boot 国际化MessageSource
转自:https://blog.csdn.net/flowingflying/article/details/76358970 spring中ResourceBundleMessageSource的配 ...
- Centos 解决 No package htop available.
yum install -y epel-release 之后就可以安装 yum install -y htop 什么是EPEL? EPEL的全称叫 Extra Packages for Enterpr ...
- Centos 查看端口占用情况
netstat -ntlp 把相应PID kill掉即可
- 前端要不要学数据结构&算法
我们都知道前端开发工程师更多偏向 DOM 渲染和 DOM 交互操作,随之 Node 的推广前端工程师也可以完成服务端开发.对于服务端开发而言大家都觉得数据结构和算法是基础,非学不可.所以正在进行 No ...
- Konva的使用
KonvaJS 快速入门 Konva 是一个 基于 Canvas 开发的 2d js 框架库, 它可以轻松的实现桌面应用和移动应用中的图形交互交互效果. Konva 可以高效的实现动画, 变换, 节点 ...
- PHP表单(get,post)提交方式
PHP 表单处理 PHP 超全局变量 $_GET 和 $_POST 用于收集表单数据(form-data). $_GET 是通过 URL 参数传递到当前脚本的变量数组. $_POST 是通过 HTTP ...
- CSS布局框架 960GS 表单排版示例
- VMWare虚拟机网络配置
Bridged(桥接模式) 桥接模式相当于虚拟机和主机在同一个真实网段,VMWare充当一个集线器功能(一根网线连到主机相连的路由器上),所以如果电脑换了内网,静态分配的ip要更改.图如下: NAT( ...
- 第八天 RHEL7.2 文件权限管理(第一部分)
一.文件的基本权限 文件有三种访问方式限制访问权限 第一种:文件所有者的访问权限 第二种:文件所有者同组的访问权限 第三种:其他人访问权限 当使用ls -l 或ll命令时,可查看此三种权限 在权限描述 ...