HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
What is the expect number of tunnels he go through before he find the exit?
InputFirst line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
OutputFor each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
- 3
- 3
- 1 2
- 1 3
- 0 0
- 100 0
- 0 100
- 3
- 1 2
- 2 3
- 0 0
- 100 0
- 0 100
- 6
- 1 2
- 2 3
- 1 4
- 4 5
- 4 6
- 0 0
- 20 30
- 40 30
- 50 50
- 70 10
- 20 60
Sample Output
- Case 1: 2.000000
- Case 2: impossible
- Case 3: 2.895522
题意:
师傅又被抓了,师傅现在在一个树里。第一天他在1号节点;对于每一个节点,有三种可能,一是被妖怪杀死ki,二是被徒儿救走ei,三是第二天等概率地走到相邻的一个节点。问师傅被救走的天数的期望,不能被救走输出“impossible”。
思路:
上一个题,由于是单调的,没有后续性,所以可以记忆化搜索或者DP解决。这个题存在后续性,举个例子。如果求从s号节点逃出去的期望dp[s],那么dp[s]和s的子节点和s的父节点有关,而欲求s的子节点时,子节点又和父节点s有关。。。
这个时候就需要我们找一个办法来排除后续性。大概就是找一个很牛逼的公式。这个公式本来是和后续性有关,但是公式之间抵消的后续性。
kuangbin的博客例子,先看朴素的公式:
- 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。
- 叶子结点:
- E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
- = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);
- 非叶子结点:(m为与结点相连的边数)
- E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
- = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);
但是i的结果需要先求父亲和儿子,出现了交叉,无法下手。解决方法是想办法变成只和父亲有关的公式。
- 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;
具体的:
- 对于非叶子结点i,设j为i的孩子结点,则
- ∑(E[child[i]]) = ∑E[j]
- = ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
- = ∑(Aj*E[1] + Bj*E[i] + Cj)
- 带入上面的式子得
- (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
- 由此可得
- Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
- Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
- Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);
- 对于叶子结点
- Ai = ki;
- Bi = 1 - ki - ei;
- Ci = 1 - ki - ei;
- 从叶子结点开始,直到算出 A1,B1,C1;
- E[1] = A1*E[1] + B1*0 + C1;
- 所以
- E[1] = C1 / (1 - A1);
- 若 A1趋近于1则无解...
这下大概是有眉目了。
HDU4035 Maze(师傅逃亡系列•二)(循环型 经典的数学期望)的更多相关文章
- ZOJ3640Help Me Escape(师傅逃亡系列•一)(数学期望||概率DP)
Background If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at ...
- HDU3853LOOPS (师傅逃亡系列•三)(基础概率DP)
Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka sa ...
- 雷达无线电系列(二)经典CFAR算法图文解析与实现(matlab)
一,CFAR基础知识介绍 简介 恒虚警检测技术是指雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术. 前提 由于接收机输出端中肯定存有噪声(包括大气噪声.人为 ...
- Web 前端开发人员和设计师必读文章推荐【系列二十八】
<Web 前端开发精华文章推荐>2014年第7期(总第28期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十七】
<Web 前端开发精华文章推荐>2014年第6期(总第27期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十三】
<Web 前端开发精华文章推荐>2014年第2期(总第23期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- Web 前端开发精华文章推荐(HTML5、CSS3、jQuery)【系列二十二】
<Web 前端开发精华文章推荐>2014年第一期(总第二十二期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML ...
- 【圣诞特献】Web 前端开发精华文章推荐【系列二十一】
<Web 前端开发精华文章推荐>2013年第九期(总第二十一期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 ...
- Web 前端开发精华文章集锦(jQuery、HTML5、CSS3)【系列二十】
<Web 前端开发精华文章推荐>2013年第八期(总第二十期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各种增强网站用户体验的 jQuery 插件,展示前沿的 HTML5 和 C ...
随机推荐
- 解题报告:codeforce 7C Line
codeforce 7C C. Line time limit per test1 second memory limit per test256 megabytes A line on the pl ...
- Spring boot 外部资源配置
tomcat配置访问图片路径映射到磁盘路径 首先,我在调试页面的时候发现,图片路径为: 1 /webapps/pic_son/img/1234565456.jpg 但是,tomcat中webapp ...
- 如何更改nagios监控默认的检查时间
/usr/local/nagios/etc/nagios.cfg: interval_length 表示时间单位,默认为60,即1分钟 /usr/local/nagios/etc/objects/se ...
- harbor 管理Helm Chart包
官方网站:https://github.com/goharbor/harbor官方用户手册:https://github.com/goharbor/harbor/blob/master/docs/us ...
- vim与shell切换
扩展一些vim的知识. vim与shell切换 :shell 可以在不关闭vi的情况下切换到shell命令行. :exit 从shell回到vim. 文件浏览 :Ex 开启目录浏览器,可以浏览当前目录 ...
- git rm -r --cache命令 及 git .gitignore 文件
git 的 .gitignore 文件的作用是在代码提交时自动忽略一个文件.不将其纳入版本控制系统. 比如.一般我们会忽略IDE自动生成的配置文件等. 如果一个你要忽略的文件已经纳入到了git ,也 ...
- Django 2.0 的路由如何实现正则表达式
在django2.0的路由系统中,摒弃了1.x中的url,而改用path.需要导入path. from django.urls import path,re_path 在1.x中,使用url()即可实 ...
- 刷完了leetcode的数据库题目~
很久很久很久之前,我上传了几条数据库题目,并没有坚持,今天跟新一下进度吧,其实没啥难度w(* ̄︶ ̄)
- keras运行gan的几个bug解决
http://blog.csdn.net/u012317000/article/details/79211274 https://www.jianshu.com/p/5b1f7004144d
- Template、ItemsPanel、ItemContainerStyle、ItemTemplate (部分内容有待验证)
以下摘自“CSDN”的某人博客,部分内容有待验证,需注意“辨别学之....” 1.Template是指控件的样式 在WPF中所有继承自contentcontrol类的控件都含有此属性,(继承自Fram ...