BZOJ1853 Scoi2010 幸运数字


Description

在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是太少了,比如在[1,100]的区间内就只有6个(6,8,66,68,86,88),于是他又定义了一种“近似幸运号码”。lxhgww规定,凡是“幸运号码”的倍数都是“近似幸运号码”,当然,任何的“幸运号码”也都是“近似幸运号码”,比如12,16,666都是“近似幸运号码”。 现在lxhgww想知道在一段闭区间[a, b]内,“近似幸运号码”的个数。

Input

输入数据是一行,包括2个数字a和b

Output

输出数据是一行,包括1个数字,表示在闭区间[a, b]内“近似幸运号码”的个数

Sample Input

【样例输入1】
1 10
【样例输入2】
1234 4321

Sample Output

【样例输出1】
2
【样例输出2】
809

HINT

【数据范围】
对于30%的数据,保证1 < =a < =b < =1000000
对于100%的数据,保证1 < =a < =b < =10000000000


首先我们可以把所有由6和8组成的数dfs出来,数量不多一共只有两千个

然后我们发现对于i%j==0,i在这里是没有意义的,这样筛一下大概就剩1000个左右,然后我们考虑暴力容斥,对于一个数w,在晒完的数里面如果有p个约数,那么我们把答案加上,-1^P(r/w-(l-1)/w)
这个容斥我不证明,理解一下还是很简单的


 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 10010
vector<LL> number,v;
bool vis[N];
LL l,r,ans=;
void dfs(LL tmp){
if(tmp)number.push_back(tmp);
if(tmp*+<=r)dfs(tmp*+);
if(tmp*+<=r)dfs(tmp*+);
}
LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
void Find(int tmp,LL lcm,int sign){
if(tmp==(signed)v.size()){
if(lcm>)ans+=(r/lcm-(l-)/lcm)*sign;
return;
}
Find(tmp+,lcm,sign);
double nxt=(double)v[tmp]/(double)gcd(v[tmp],lcm)*(double)lcm;
if(nxt>r)return;
Find(tmp+,nxt,-sign);
}
void solve(){
dfs();
sort(number.begin(),number.end());
int n=number.size()-;
for(int i=;i<=n;i++)if(!vis[i])
for(int j=i+;j<=n;j++)
if(number[j]%number[i]==)vis[j]=;
for(int i=;i<=n;i++)if(!vis[i])v.push_back(number[i]);
reverse(v.begin(),v.end());
}
int main(){
scanf("%lld%lld",&l,&r);
solve();
Find(,,-);
printf("%lld",ans);
return ;
}

BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】的更多相关文章

  1. 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)

    传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...

  2. P2567 [SCOI2010]幸运数字 DFS+容斥定理

    P2567 [SCOI2010]幸运数字 题目描述 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,66 ...

  3. [SCOI2010]幸运数字(容斥+爆搜)

    在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是 ...

  4. [BZOJ1853][Scoi2010]幸运数字 容斥+搜索剪枝

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3202  Solved: 1198[Submit][Status ...

  5. bzoj1853[Scoi2010]幸运数字 容斥

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 3027  Solved: 1128[Submit][Status ...

  6. BZOJ1853 [Scoi2010]幸运数字

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  7. BZOJ1853 [Scoi2010]幸运数字 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1853 题意概括 求一个区间范围内,近似幸运数字的个数. 定义: 幸运数字:仅由6或者8组成的数字. ...

  8. bzoj1853: [Scoi2010]幸运数字 dp+容斥原理

    在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是 ...

  9. 并不对劲的bzoj1853:[SCOI2010]幸运数字

    传送门-> 据说本题的正确读法是[shìng运数字]. 听上去本题很适合暴力,于是并不对劲的人就去写了.其实这题就是一个很普(有)通(趣)暴力+神奇的优化. 首先,会发现幸运数字很少,那么就先搜 ...

随机推荐

  1. linux一键安装nginx脚本

    #!/bin/sh echo "----------------------------------start install nginx ------------------------- ...

  2. java 之 find 命令

    转自:https://blog.csdn.net/holyshit666/article/details/52296966 find命令是比较常用的命令,用来在特定目录下查找具有某种特征的文件. 一: ...

  3. Android -- 多线程下载, 断点下载

    1. 原理图 2. 示例代码 需要权限 <uses-permission android:name="android.permission.INTERNET"/> &l ...

  4. Android -- 文件上传到服务器

    1. 文件上传的两种方式 (1) HttpClient (2)AsyncHttpClient (开源框架: https://github.com/loopj/android-async-http) 示 ...

  5. 字体渲染技术(字体抗锯齿技术) -webkit-font-smoothing: antialiased;

    1.-webkit-font-smoothing控制的字体渲染只对MacOS的webkit有效.所以,你在MacOS测试环境下面设置-webkit-font-smoothing时,只要你不把它设置为n ...

  6. JavaScript权威指南--词法结构

    使用广泛,所有的浏览器(桌面.手机.屏蔽等等)都配有相应的JavaScript解析器. JavaScript解析器如何工作? 浏览器在读取HTML文件的时候,只有当遇到<script>标签 ...

  7. S.O.L.I.D 是面向对象设计(OOD)和面向对象编程(OOP)中的几个重要编码原则

    注:以下图片均来自<如何向妻子解释OOD>译文链接:http://www.cnblogs.com/niyw/archive/2011/01/25/1940603.html      < ...

  8. poj1679次小生成树入门题

    次小生成树求法:例如求最小生成树用到了 1.2.4这三条边,总共5条边,那循环3次的时候,每次分别不用1.2.4求得最小生成树的MST,最小的MST即为次小生成树 如下代码maxx即求最小生成树时求得 ...

  9. 2-6-搭建FTP服务器实现文件共享

    ---------------------------------------------- 大纲: FTP服务:(文件传输协议---> File Transfer Protocol) 常见FT ...

  10. List根据某个字段(属性)去重

    有时候自带的list.Distinct()去重并不能满足魔门的要求,比如以下情况 如果testList的Name相同则视为重复,则可以如下实现,比写循环语句简洁多了 testList.Where((x ...