【题意】T次询问第k小的非完全平方数倍数的数。T<=50,k<=10^9。(即无平方因子数——素因数指数皆为0或1的数)

【算法】数论(莫比乌斯函数)

【题解】考虑二分,转化为询问[1,x]中无平方因子数的个数(x最大为2n)。

运用容斥,答案ans=x - 1个素数的平方的倍数的数的个数 + 2个素数的乘积的平方的倍数的数的个数……

枚举i=[1,√x]的所有数字,系数是莫比乌斯函数,i的平方的倍数的数的个数就是n/(i^2)。

ans=x-Σμ(i)*n/(i^2),i∈[1,√x]

复杂度O(T*√n)。

注意:二分上届为2n,l+r会爆int。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=;
int T,tot,n,miu[maxn],prime[maxn];
bool mark[maxn];
int main(){
scanf("%d",&T);
miu[]=;
for(int i=;i<=;i++){
if(!mark[i]){prime[++tot]=i;miu[i]=-;}
for(int j=;j<=tot&&i*prime[j]<=;j++){
mark[i*prime[j]]=;
if(i%prime[j]==)break;
miu[i*prime[j]]=-miu[i];
}
}
while(T--){
scanf("%d",&n);
long long l=,r=*n,mid,ans;//
while(l<r){
mid=(l+r)>>;ans=;int sq=(int)sqrt(mid);
for(int i=;i<=sq;i++){
ans+=miu[i]*mid/i/i;
}
if(ans>=n)r=mid;else l=mid+;
}
printf("%lld\n",l);
}
return ;
}

定义集合x(素数)表示不是x^2的倍数的数字集合。

则要求集合并,容易知道集合交的补集。

【BZOJ】2440: [中山市选2011]完全平方数的更多相关文章

  1. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  2. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  3. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  4. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  5. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  6. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  7. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  8. bzoj 2440: [中山市选2011]完全平方数

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  9. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  10. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

随机推荐

  1. Jquery mobile div常用属性

    组件 页面 jQuery Mobile 应用了 HTML5 标准的特性,在结构化的页面中完整的页面结构分为 header. content.footer 这三个主要区域. 在 body 中插入内容块: ...

  2. CentOS7安装.NET Core运行环境

    安装.NET Core ->首先需要删除以前安装的版本 -> 获取安装脚本 curl -sSL https://raw.githubusercontent.com/dotnet/cli/r ...

  3. eclipse取消validation验证

    点击按钮如下:window-Preferences-Validation.如图. 然后把build里面的都取消.即可.

  4. PAT 甲级 1077 Kuchiguse

    https://pintia.cn/problem-sets/994805342720868352/problems/994805390896644096 The Japanese language ...

  5. freemarker中空值 null的处理 ?exists ?if_exists ?default(“”)

    exists:由空值测试运算符的引入,它被废弃了. exp1?exists 和 exp1??是一样的, ( exp1)?exists 和(exp1)??也是一样的. if_exists:由默认值运算符 ...

  6. .netMVC Vue axios 获取数据

    网页 <link href="~/Content/css/bootstrap-theme.min.css" rel="stylesheet" /> ...

  7. HDU2993_MAX Average Problem

    题目要求你在n个数的序列中,找出一段连续的长度不小于k的连续的序列,使得这个序列的平均数最大.输出这个平均数. 典型的优先队列.首先我们需要根据输入的序列,制造一个和序列. 然后从k开始往后面走,其实 ...

  8. 题解 P1781 【宇宙总统】

    小金羊发现用的方法和python大佬们的方法还是不一样... (大概是我太弱了qAq) emmm... (Mode:Python 3)Code: a=int(input()) #几个数 L=list( ...

  9. 题解 P1808 【单词分类_NOI导刊2011提高(01)】

    大家用的方法都太好了!! 蒟蒻小金羊来发一篇玄学堆排. STL大法好! (附有核心code详解,完整code) 核心:两次排序,第一次自我排序,第二次整体排序. 核心code1: string str ...

  10. P3629 [APIO2010]巡逻

    题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通过这些道路到达其 他任一个村庄.每条道 ...