Coursera在线学习---第六节.构建机器学习系统
备:
High bias(高偏差) 模型会欠拟合
High variance(高方差) 模型会过拟合
正则化参数λ过大造成高偏差,λ过小造成高方差
一、利用训练好的模型做数据预测时,如果效果不好,下一步大概如何做?存在如下几种情况:
1)获取更多的训练样本。(高方差时用。增加训练样本能防止过度拟合,进而防止高方差,因为非常多的训练样本,很难完全拟合)
2)使用更少的特征维度。(高方差时用,因为有可能过拟合了)
3)使用更多的特征维度。(高偏差时用,因为有可能欠拟合了)
4)增加多项式特征。(高偏差时用)
5)减小λ值。(高偏差时用,因为可能欠拟合了)
6)增加λ值。(高方差时用,因为可能过拟合)
二、训练样本分割比例问题
1)通常7:3比例:70%训练样本,30%测试样本
2)另一种是6:2:2 60%训练集 20%验证集 20%测试集
在选取正则化参数λ的值与多项式预测选用最高次数时,均可以采用第(2)种分割方式。
例如:对于多项式最高次数d(d=1,2,...,10),分别用训练集训练出10个模型,然后利用学习后的参数Θ计算验证集的误差Jcv,选取使Jcv最小的一个d。
神经网络的隐藏层数,也可以采用第(2)种方式,用验证集去验证采用几个层比较好,方法同上述多项式。一般来讲,采用一个隐藏层的居多。
三、当模型处于高偏差时,此时模型过于简单,处于欠拟合状态。这个时候增加更多的训练样本,依然不会有用,因为当前的训练样本都没有拟合好,增加更多的样本,更难以拟合好,所以是模型的问题所在。
四、如何平衡查准率和召回率?
采用F1值是一个好办法。
F1=2*[(P*R)/(R+P)] 当P或R=0时,F1=0 (可以防止某一项值过低) ;当P=1且R=1时,F1=1
F1值越大的模型,相对较好一些。
五、什么条件下训练出来的模型最好(总结)?
1)拥有复杂的参数,模型可以防止高偏差。
2)拥有更多的训练样本,可以防止高方差。
所以,如果一个模型拥有相对复杂的参数(也不能太复杂),同时拥有更多的训练样本,这样出来的模型往往是一个较好的模型!
六、根据模型的学习曲线(learning curves)判断模型拟合的好与差。
因为多维数据很难直接画出数据与模型的拟合曲线,通过画模型的学习曲线可以直观看出模型的拟合情况。
High bias(高偏差)
High variance(高方差)
七、在进行多项式回归时,比如:x,x^2,x^3,...,x^8等等,一定要先对x进行归一化,否则的话,x^8的值会非常之大。
Coursera在线学习---第六节.构建机器学习系统的更多相关文章
- Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)
一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体 ...
- Coursera在线学习---第七节.支持向量机(SVM)
一.代价函数 对比逻辑回归与支持向量机代价函数. cost1(z)=-log(1/(1+e-z)) cost0(z)=-log(1-1/(1+e-z)) 二.支持向量机中求解代价函数中的C值相当于 ...
- Coursera在线学习---第五节.Logistic Regression
一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...
- Coursera在线学习---第四节.过拟合问题
一.解决过拟合问题方法 1)减少特征数量 --人为筛选 --靠模型筛选 2)正则化(Regularization) 原理:可以降低参数Θ的数量级,使一些Θ值变得非常之小.这样的目的既能保证足够的特征变 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- VUE2.0实现购物车和地址选配功能学习第六节
第六节 地址列表过滤和展开所有的地址 html:<li v-for="(item,index) in filterAddress">js: new Vue({ el:' ...
- Coursera在线学习---第九节(1).异常数据检测(Anomaly Detection)
一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选 ...
- Coursera在线学习---第九节(2).推荐系统
一.基于内容的推荐系统(Content Based Recommendations) 所谓基于内容的推荐,就是知道待推荐产品的一些特征情况,将产品的这些特征作为特征变量构建模型来预测.比如,下面的电影 ...
- Coursera在线学习---第二节.Octave学习
1)两个矩阵相乘 A*B 2)两个矩阵元素位相乘(A.B矩阵中对应位置的元素相乘) A.*B 3)矩阵A的元素进行平方 A.^2 4)向量或矩阵中的元素求倒数 1./V 或 1./A 5) ...
随机推荐
- 第146天:移动H5前端性能优化
移动H5前端性能优化 一.概述 1. PC优化手段在Mobile侧同样适用 2. 在Mobile侧我们提出三秒种渲染完成首屏指标 3. 基于第二点,首屏加载3秒完成或使用Loading 4. 基于联通 ...
- 【Python】python 反射机制在实际的应用场景讲解
剖析python语言中 "反射" 机制的本质和实际应用场景一. 前言 def s1(): print("s1是这个函数的名字!") s = "s1&q ...
- 51nod 1503 猪和回文(多线程DP)
虚拟两个点,一个从左上角开始走,一个从右下角开始走,定义dp[i][j][k]表示走了i步后,第一个点横向走了j步,第二个点横向走了k步后形成的回文方法种数. 转移方程显然可得,然后滚动数组搞一搞. ...
- 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆
题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...
- 【交换机在江湖】第十三章 VLAN划分篇
江湖各位大侠重温了VLAN的基础知识,是否想过4094个VLAN可以怎样划分,哪种方式又是好用简单的?细心的小编特地整理了一番,给各位大侠把玩把玩. VLAN划分的方式: Ø 基于接口划分VLAN: ...
- 深入理解JVM一配置参数
一.JVM配置参数分为三类参数: 1.跟踪参数 2.堆分配参数 3.栈分配参数 这三类参数分别用于跟踪监控JVM状态,分配堆内存以及分配栈内存. 二.跟踪参数 跟踪参数用于跟踪监控JVM,往往被开发人 ...
- 51nod 1292 字符串中的最大值V2(后缀自动机)
题意: 有一个字符串T.字符串S的F函数值可以如下计算:F(S) = L * S在T中出现的次数(L为字符串S的长度).求所有T的子串S中,函数F(S)的最大值. 题解: 求T的后缀自动机,然后所有每 ...
- 【CF123E】Maze
Portal --> cf123E Solution 首先步数的话可以转化成每条边经过了几次这样来算 假设现在确定了起点\(S\)和终点\(T\),我们将\(T\)看成树根,那么考虑边\((u, ...
- apk签名验证机制
声明: 1.本帖转载自:http://riusksk.blogbus.com/logs/272154406.html,仅供自用,勿喷 2.欢迎交流学习 签名后的APK,在/META-INF目录下会生成 ...
- 让块元素在同一行显示的方法: float 和inline-block
float: 定义:按照一个指定的方向移动,遇到父级的边界或者相邻的浮动元素就会停下来(不完全脱离文档流) 值: left.right.none 特点: 1.浮动的块元素可以在一行显示,宽度是被内容撑 ...