isolation forest进行异常点检测
一、简介
孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择。在建树过程中,如果一些样本很快就到达了叶子节点(即叶子到根的距离d很短),那么就被认为很有可能是异常点。
具体步骤:
Forest 由t个iTree(Isolation Tree)孤立树 组成,每个iTree是一个二叉树结构,其实现步骤如下:
1. 从训练数据中随机选择Ψ个点样本点作为subsample,放入树的根节点。
2. 随机指定一个维度(attribute),在当前节点数据中随机产生一个切割点p——切割点产生于当前节点数据中指定维度的最大值和最小值之间。
3. 以此切割点生成了一个超平面,然后将当前节点数据空间划分为2个子空间:把指定维度里小于p的数据放在当前节点的左孩子,把大于等于p的数据放在当前节点的右孩子。
4. 在孩子节点中递归步骤2和3,不断构造新的孩子节点,直到 孩子节点中只有一个数据(无法再继续切割) 或 孩子节点已到达限定高度 。
获得t个iTree之后,iForest 训练就结束,然后我们可以用生成的iForest来评估测试数据了。对于一个训练数据x,我们令其遍历每一棵iTree,然后计算x最终落在每个树第几层(x在树的高度)。就可以得出x在森林中的高度平均值,即 the average path length over t iTrees。*值得注意的是,如果x落在一个节点中含多个训练数据,可以使用一个公式来修正x的高度计算,详细公式推导见原论文。
获得每个测试数据的average path length后,我们可以设置一个阈值(边界值),average path length 低于此阈值的测试数据即为异常。也就是说 “iForest identifies anomalies as instances having the shortest average path lengths in a dataset ”(异常在这些树中只有很短的平均高度). *值得注意的是,论文中对树的高度做了归一化,并得出一个0到1的数值,即越短的高度越接近1(异常的可能性越高)。

为什么距离d很短就认为是异常点呢?
比如一个维度里有1,2,3,4,5,100,从当前维度的最大值和最小值之间随机选择一个值作为切分点,假如是50,那么大于50的分在右子树,小于50的分在左子树,最终分成了两组,【1,2,3,4,5】和【100】,而在【100】这个样本组里,因为只有一个样本点了,所以不再划分了,高度就是1了,所以距离很短。
二、代码实现

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
from scipy import stats
rng = np.random.RandomState(42)
n_samples=6 #样本总数
# fit the model
clf = IsolationForest(max_samples=n_samples, random_state=rng, contamination=0.33) #contamination为异常样本比例
clf.fit(df.values)
scores_pred = clf.decision_function(df.values)
print(scores_pred)
print(len(scores_pred))
threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction)
结果:[ 0.11573485 0.12433055 0.13780741 0.12351238 0.06556263 -0.05915569]
clf.predict(df.values)
array([ 1, 1, 1, 1, -1, -1])
三、测试
decision_function(X)
test=[[2,4,50,3,5,69,8]]
clf.decision_function(test)
输出:
array([0.08241789])
clf.predict(df.values)
输出:
array([ 1, 1, 1, 1, -1, -1]) 四、算法应用
Isolation Forest 算法主要有两个参数:一个是二叉树的个数;另一个是训练单棵 iTree 时候抽取样本的数目。实验表明,当设定为 100 棵树,每棵树高度不超过8,抽样样本数为 256 条时候,IF 在大多数情况下就已经可以取得不错的效果。这也体现了算法的简单、高效。
Isolation Forest 是无监督的异常检测算法,在实际应用时,并不需要黑白标签。需要注意的是:(1)如果训练样本中异常样本的比例比较高,违背了先前提到的异常检测的基本假设,可能最终的效果会受影响;(2)异常检测跟具体的应用场景紧密相关,算法检测出的“异常”不一定是我们实际想要的。比如,在识别虚假交易时,异常的交易未必就是虚假的交易。所以,在特征选择时,可能需要过滤不太相关的特征,以免识别出一些不太相关的“异常”。
五、IF特点
1. iForest具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。
2. iForest不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant attributes),影响树的构建。对这类数据,建议使用子空间异常检测(Subspace Anomaly Detection)技术。此外,切割平面默认是axis-parallel的,也可以随机生成各种角度的切割平面,详见“On Detecting Clustered Anomalies Using SCiForest”。
3. iForest仅对Global Anomaly 敏感,即全局稀疏点敏感,不擅长处理局部的相对稀疏点 (Local Anomaly)。目前已有改进方法发表于PAKDD,详见“Improving iForest with Relative Mass”。
4. iForest推动了重心估计(Mass Estimation)理论发展,目前在分类聚类和异常检测中都取得显著效果,发表于各大顶级数据挖掘会议和期刊(如SIGKDD,ICDM,ECML)。
参考链接:https://www.jianshu.com/p/5af3c66e0410
isolation forest进行异常点检测的更多相关文章
- (转)isolation forest进行异常点检测
原文链接:https://www.cnblogs.com/gczr/p/9156971.html 一.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似, ...
- [置顶]
Isolation Forest算法原理详解
本文只介绍原论文中的 Isolation Forest 孤立点检测算法的原理,实际的代码实现详解请参照我的另一篇博客:Isolation Forest算法实现详解. 或者读者可以到我的GitHub上去 ...
- Python机器学习笔记 异常点检测算法——Isolation Forest
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...
- [转]Python机器学习笔记 异常点检测算法——Isolation Forest
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolat ...
- 异常检测算法--Isolation Forest
南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...
- 异常检测算法:Isolation Forest
iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iFore ...
- 【异常检测】孤立森林(Isolation Forest)算法简介
简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会 ...
- 【异常检测】Isolation forest 的spark 分布式实现
1.算法简介 算法的原始论文 http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf .python的sklearn中已经实现 ...
- 孤立森林(Isolation Forest)
前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆, ...
随机推荐
- App流量测试--使用安卓自身提供的TCP收发长度统计功能
在Linux系统有3个地方保存流量统计文件,对于Android系统同样也适用: (1)在/proc/net/dev下可以查看各个网络接口的收发流量 (等同adb shell cat /proc/pi ...
- hdu6415 Rikka with Nash Equilibrium (DP)
题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...
- AtCoder Regular Contest 076E Coneected?
题意 给出一个矩形区域和上面的m对整点,要求在矩形区域内画m条互不相交的线(可以是曲线)分别把m对点连接起来.只需要输出能不能做到. 分析 假设我们已经画了一条线.因为在这个题中有用的是平面区域之间的 ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- 【比赛】HNOI2018 转盘
通过这题,我发现了我最大的缺陷,就是题目中重要的性质发现不了,所以导致后期根本做不了.还是要多做题,培养思维 对于这道题,来发现性质吧 对于每一条路线,因为它有用的就是最终的时刻,所以我们都可以把它变 ...
- JavaWeb文件上传和下载
文件上传和下载在web应用中非常普遍,要在jsp环境中实现文件上传功能是非常容易的,因为网上有许多用java开发的文件上传组件,本文以commons-fileupload组件为例,为jsp应用添加文件 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- 《剑指offer》— JavaScript(14)链表中倒数第k个结点
链表中倒数第k个结点 题目描述 输入一个链表,输出该链表中倒数第k个结点. 思路 两个指针,先让第一个指针和第二个指针都指向头结点,然后再让第一个指正走(k-1)步,到达第k个节点: 然后两个指针同时 ...
- python创建多维列表
By francis_hao Mar 24,2018 "*"操作符可以用于列表,表示将列表内容重复n次.如下, 但是当列表内容是列表的时候就出问题了,如果我只是修改多 ...
- GIT每次都要输入用户名和密码的解决方案
三.配置客户端长期存储用户各和密码 长期存储密码: git config --global credential.helper store 缓存用户信息 3600s zb@zb-computer:/h ...