CopyTable is a simple Apache HBase utility that, unsurprisingly, can be used for copying individual tables within an HBase cluster or from one HBase cluster to another. In this blog post, we’ll talk about what this tool is, why you would want to use it, how
to use it, and some common configuration caveats.

Use cases:

CopyTable is at its core an Apache Hadoop MapReduce job that uses the standard HBase Scan read-path interface to read records from an individual table and writes them to another table (possibly on a separate cluster) using the standard HBase Put write-path
interface. It can be used for many purposes:

  • Internal copy of a table (Poor man’s snapshot)
  • Remote HBase instance backup
  • Incremental HBase table copies
  • Partial HBase table copies and HBase table schema changes

Assumptions and limitations:

The CopyTable tool has some basic assumptions and limitations. First, if being used in the multi-cluster situation, both clusters must be online and the target instance needs to have the target table present with the same column families defined as the source
table.

Since the tool uses standards scans and puts, the target cluster doesn’t have to have the same number of nodes or regions.  In fact, it can have different numbers of tables, different numbers of region servers, and could have completely different region split
boundaries. Since we are copying entire tables, you can use performance optimization settings like setting larger scanner caching values for more efficiency. Using the put interface also means that copies can be made between clusters of different minor versions.
(0.90.4 -> 0.90.6, CDH3u3 -> CDH3u4) or versions that are wire compatible (0.92.1 -> 0.94.0).

Finally, HBase only provides row-level ACID guarantees; this means while a CopyTable is going on, newly inserted or updated rows may occur and these concurrent edits will either be completely included or completely excluded. While rows will be consistent, there
is no guarantees about the consistency, causality, or order of puts on the other rows.

Internal copy of a table (Poor man’s snapshot)

Versions of HBase up to and including the most recent 0.94.x versions do not support table snapshotting. Despite HBase’s ACID limitations, CopyTable can be used as a naive snapshotting mechanism that makes a physical copy of a particular table.

Let’s say that we have a table, tableOrig with column-families cf1 and cf2. We want to copy all its data to tableCopy. We need to first create tableCopy with the same column families:

dstCluster$ echo "create 'tableOrig', 'cf1', 'cf2'" | hbase shell

We can then create and copy the table with a new name on the same HBase instance:

srcCluster$ hbase org.apache.hadoop.hbase.mapreduce.CopyTable --new.name=tableCopy tableOrig

This starts an MR job that will copy the data.

Remote HBase instance backup

Let’s say we want to copy data to another cluster. This could be a one-off backup, a periodic job or could be for bootstrapping for cross-cluster replication. In this example, we’ll have two separate clusters: srcCluster and dstCluster.

In this multi-cluster case, CopyTable is a push process — your source will be the HBase instance your current hbase-site.xml refers to and the added arguments point to the destination cluster and table. This also assumes that all of the MR TaskTrackers can
access all the HBase and ZK nodes in the destination cluster. This mechanism for configuration also means that you could run this as a job on a remote cluster by overriding the hbase/mr configs to use settings from any accessible remote cluster and specify
the ZK nodes in the destination cluster. This could be useful if you wanted to copy data from an HBase cluster with lower SLAs and didn’t want to run MR jobs on them directly.

You will use the the –peer.adr setting to specify the destination cluster’s ZK ensemble (e.g. the cluster you are copying to). For this we need the ZK quorum’s IP and port as well as the HBase root ZK node for our HBase instance. Let’s say one of these machine
is srcClusterZK (listed in hbase.zookeeper.quorum) and that we are using the default zk client port 2181 (hbase.zookeeper.property.clientPort) and the default ZK znode parent /hbase (zookeeper.znode.parent). (Note: If you had two HBase instances using the
same ZK, you’d need a different zookeeper.znode.parent for each cluster.

# create new tableOrig on destination cluster
dstCluster$ echo "create 'tableOrig', 'cf1', 'cf2'" | hbase shell
# on source cluster run copy table with destination ZK quorum specified using --peer.adr
# WARNING: In older versions, you are not alerted about any typo in these arguments!
srcCluster$ hbase org.apache.hadoop.hbase.mapreduce.CopyTable --peer.adr=dstClusterZK:2181:/hbase tableOrig

Note that you can use the –new.name argument with the –peer.adr to copy to a differently named table on the dstCluster.

# create new tableCopy on destination cluster
dstCluster$ echo "create 'tableCopy', 'cf1', 'cf2'" | hbase shell
# on source cluster run copy table with destination --peer.adr and --new.name arguments.
srcCluster$ hbase org.apache.hadoop.hbase.mapreduce.CopyTable --peer.adr=dstClusterZK:2181:/hbase --new.name=tableCopy tableOrig

This will copy data from tableOrig on the srcCluster to the dstCluster’s tableCopy table.

Incremental HBase table copies

Once you have a copy of a table on a destination cluster, how do you do copy new data that is later written to the source cluster?

Naively, you could run the CopyTable job again and copy over the entire table. However, CopyTable provides a more efficient incremental
copy mechanism that just copies the updated rows from the srcCluster to the backup dstCluster specified in a window of time. Thus, after the initial copy, you could then have a periodic cron job that copies data from only the previous hour from srcCluster
to the dstCuster.

This is done by specifying the –starttime and –endtime arguments. Times are specified as decimal milliseconds since unix epoch time.

# WARNING: In older versions, you are not alerted about any typo in these arguments!
# copy from beginning of time until timeEnd 
# NOTE: Must include start time for end time to be respected. start time cannot be 0.
srcCluster$ hbase org.apache.hadoop.HBase.mapreduce.CopyTable ... --starttime=1 --endtime=timeEnd ...
# Copy from starting from and including timeStart until the end of time.
srcCluster$ hbase org.apache.hadoop.HBase.mapreduce.CopyTable ... --starttime=timeStart ...
# Copy entries rows with start time1 including time1 and ending at timeStart excluding timeEnd.
srcCluster$ hbase org.apache.hadoop.HBase.mapreduce.CopyTable ... --starttime=timestart --endtime=timeEnd

Partial HBase table copies and HBase table schema changes

By default, CopyTable will copy all column families from matching rows. CopyTable provides options for only copying data from specific column-families. This could be useful for copying original source data and excluding derived data column families that are
added by follow on processing.

By adding these arguments we only copy data from the specified column families.

  • –families=srcCf1
  • –families=srcCf1,srcCf2

Starting from 0.92.0 you can copy while changing the column family name:

  • –families=srcCf1:dstCf1

    • copy from srcCf1 to dstCf1
  • –families=srcCf1:dstCf1,dstCf2,srcCf3:dstCf3
    • copy from srcCf1 to destCf1, copy dstCf2 to dstCf2 (no rename), and srcCf3 to dstCf3

Please note that dstCf* must be present in the dstCluster table!

Starting from 0.94.0 new options are offered to copy delete markers and to include a limited number of overwritten versions. Previously, if a row is deleted in the source cluster, the delete would not be copied — instead that a stale version of that row would
remain in the destination cluster. This takes advantage of some of the 0.94.0 release’s advanced features.

  • –versions=vers

    • where vers is the number of cell versions to copy (default is 1 aka the latest only)
  • –all.cells 
    • also copy delete markers and deleted cells

Common Pitfalls

The HBase client in the 0.90.x, 0.92.x, and 0.94.x versions always use zoo.cfg if it is in the classpath, even if an hbase-site.xml file specifies other ZooKeeper quorum configuration settings. This “feature” causes a problem common in CDH3 HBase because its
packages default to including a directory where zoo.cfg lives in HBase’s classpath. This can and has lead to frustration when trying to use CopyTable (HBASE-4614). The workaround for this is to exclude the zoo.cfg file from your HBase’s classpath and to specify
ZooKeeper configuration properties in your hbase-site.xml file. http://hbase.apache.org/book.html#zookeeper

Conclusion

CopyTable provides simple but effective disaster recovery insurance for HBase 0.90.x (CDH3) deployments. In conjunction with the replication feature found and supported in CDH4’s HBase 0.92.x based HBase, CopyTable’s incremental features become less valuable
but its core functionality is important for bootstrapping a replicated table. While more advanced features such as HBase snapshots (HBASE-50) may aid with disaster recovery when it gets implemented, CopyTable will still be a useful tool for the HBase administrator.

使用CopyTable工具方法在线备份HBase表的更多相关文章

  1. HBase表的备份

    HBase表备份其实就是先将Table导出,再导入两个过程. 导出过程 //hbase org.apache.hadoop.hbase.mapreduce.Driver export 表名 数据文件位 ...

  2. pt-online-schema-change工具使用教程(在线修改大表结构)

    percona-toolkit中pt-online-schema-change工具安装和使用 pt-online-schema-change介绍 使用场景:在线修改大表结构 在线数据库的维护中,总会涉 ...

  3. 浅谈hbase表中数据导出导入(也就是备份)

    转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=23916356&id=3321832 最近因为生产环境hbase ...

  4. 一种HBase表数据迁移方法的优化

    1.背景调研: 目前存在的hbase数据迁移主要分如下几类: 根据上图,可以看出: 其实主要分为两种方式:(1)hadoop层:因为hbase底层是基于hdfs存储的,所以可以通过把hdfs上的数据拷 ...

  5. mysql导出csv/sql/newTable/txt的方法,mysql的导入txt/sql方法...mysql备份恢复mysqlhotcopy、二进制日志binlog、直接备份文件、备份策略、灾难恢复.....................................................

    mysql备份表结构和数据 方法一. Create table new_table_nam备份到新表:MYSQL不支持: Select * Into new_table_name from old_t ...

  6. Linux操作系统备份之一:使用LVM快照实现Linux操作系统数据的在线备份

    这里我们讨论Linux操作系统的备份. 在生产环境,客户都会要求做全系统的数据备份,用于系统崩溃后的一种恢复手段.这其中就包含操作系统数据的备份恢复. 由于是生产环境,客户都会要求备份不中断业务,也就 ...

  7. oracle在线重定义表

    在一个高可用系统中,如果需要改变一个表的定义是一件比较棘手的问题,尤其是对于7×24系统.Oracle提供的基本语法基本可以满足一般性修改,但是对于把普通堆表改为分区表,把索引组织表修改为堆表等操作就 ...

  8. 使用exp&imp工具进行数据库备份及恢复

    使用exp&imp工具进行数据库备份及恢复1.exp/imp使用方法介绍exp/imp为一种数据库备份恢复工具,也可以作为不同数据库之间传递数据的工具,两个数据库所在的操作系统可以不同.exp ...

  9. dbms_redefinition在线重定义表结构 可以在表分区的时候使用

    dbms_redefinition在线重定义表结构 (2013-08-29 22:52:58) 转载▼ 标签: dbms_redefinition 非分区表转换成分区表 王显伟 在线重定义表结构 在线 ...

随机推荐

  1. hdu 4352 数位dp+nlogn的LIS

    题意:求区间L到R之间的数A满足A的的数位的最长递增序列的长度为K的数的个数. 链接:点我 该题的关键是记录LIS的状态,学习过nlogn解法的同学都知道,我们每次加入的元素要和前面的比对替换,这里就 ...

  2. 【洛谷】P1176: 路径计数2【递推】

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法. 但是这个问题太简单了,所以 ...

  3. PHP -- 简单表单提交

    网上看博文,一步步入门~~ 简单表单,简单提交 @_@!! <?php //php代码部分开始 echo "<html>"; echo "<hea ...

  4. python开发_linecache

    #从linecache的名称,我们可以知道该模块和cache(缓存)有关 #linecache现把文件读入到缓存中,在以后访问文件的时候,就不必要再从硬盘读取 #所以经常用于那些读取频率很高的文件还可 ...

  5. Codeforces Beta Round #7 B. Memory Manager 模拟题

    B. Memory Manager 题目连接: http://www.codeforces.com/contest/7/problem/B Description There is little ti ...

  6. mysql_server安装

    https://blog.csdn.net/wz1226864411/article/details/76146180

  7. RFID Reader ICs

    http://www.advanide.com/readeric.htm Low Frequency Reader ICs Manufacturer Product Frequency ISO Com ...

  8. 创建自己的Repo Server

    非常久曾经出于好奇细致了解了下Repo及server的原理,可是今天突然发现有些忘了.于是想记录下来. Repo机制 Repo是google官方为管理Android项目开发出来的一个软件. 我们先来看 ...

  9. 结构体序列为JSON

    结构体序列为JSON 本例运行效果图: uses SynCommons; const /// JSON字符串 JSON1 = '{' + #13#10 + '"glossary": ...

  10. 怎样加入cocostudio生成的UI到项目

    cocos2dx版本号:cocos2d-x-3.2alpha0 cocostudio版本号:V1.4.0.1 1.将cocostudio生成的UI文件复制到项目Resources目录 2.加入头文件, ...