题意:求\(1\leq i \leq N,1\leq j \leq M,gcd(i,j)\)的质因子个于等于p的对数。

分析:加上了对质因子个数的限制。

设\(f(d):[gcd(i,j)=d]\) , \(F(d):[d|gcd(i,j)]\) ,k是满足质因子<=p的数。

则\(ans = \sum_{k}f(k) = \sum_{k}\sum_{k|d}u(\frac{d}{k})\lfloor \frac{N}{d}\rfloor \lfloor\frac{M}{d}\rfloor = \sum_{d}\lfloor \frac{N}{d}\rfloor \lfloor\frac{M}{d}\rfloor\sum_{k|d}u(\frac{d}{k})\)

\(\sum_{k|d}u(\frac{d}{k})\)可以预处理得到。

由于限制了质因子的个数,并且我们还想用分块的方法求出最后答案,于是设\(sum(a,b):\sum_{i=1}^{a}\sum_{k|i且k质因子个数\leq j}u(\frac{i}{k})\)。在打出莫比乌斯函数表后,可以在预处理出\(sum(a,b)表\),由于1e6以内的数质因子个数不会超过20,因此第二维开到20即可。

那么计算结果时可以分块加速求出ans的值。

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=5e5+5;
bool vis[maxn];
int prime[maxn],mu[maxn];
int sum[maxn][20];
int pricnt[maxn];
void init(){
memset(vis,false,sizeof(vis));
mu[1] = 1;
prime[0] = 0;
int cnt=0;
for(int i=2;i<maxn;++i){
if(!vis[i]){
mu[i] = -1;
pricnt[i] = 1;
prime[++cnt] = i;
}
for(int j=1;j<=cnt;++j){
if(i*prime[j] >= maxn) break;
pricnt[i*prime[j]] = pricnt[i]+1;
vis[i*prime[j]] = true;
if(i % prime[j]){
mu[i*prime[j]] = -mu[i];
}
else{
mu[i*prime[j]] = 0;
break;
}
}
}
} void prepare(){
for(int i=1;i<maxn;++i){
for(int j= i;j<maxn;j+=i){
sum[j][pricnt[i]] += mu[j/i];
}
}
for(int i=1;i<maxn;++i){
for(int j =0;j<20;++j){
sum[i][j] +=sum[i-1][j];
}
}
for(int i=1;i<maxn;++i){
for(int j=1;j<20;++j){
sum[i][j] +=sum[i][j-1];
}
}
} LL gao(LL n,LL m,LL p) //枚举p
{
LL ans = 0;
for(int i=1,j;i<=n;i=j+1){
j = min(n/(n/i),m/(m/i));
ans += (sum[j][p]-sum[i-1][p])*(n/i)*(m/i);
}
return ans;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
init();
prepare();
LL N,M,p;
int T; scanf("%d",&T);
while(T--){
scanf("%lld %lld %lld",&N, &M,&p);
LL res=0;
if(p>=20){
res = N*M;
}
else{
if(N>M) swap(N,M);
res = gao(N,M,p);
}
printf("%lld\n",res);
}
return 0;
}

HDU 4746 Mophues(莫比乌斯反演)的更多相关文章

  1. HDU 4746 Mophues (莫比乌斯反演应用)

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  2. hdu 4746 Mophues 莫比乌斯反演+前缀和优化

    Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...

  3. HDU 4746 Mophues 莫比乌斯反演

    分析: http://blog.csdn.net/acdreamers/article/details/12871643 分析参见这一篇 http://wenku.baidu.com/view/fbe ...

  4. Mophues HDU - 4746 (莫比乌斯反演)

    Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...

  5. HDU - 4746预处理莫比乌斯反演

    链接 求[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于等于p 直接暴力做特定超时,所以我们想办法预处理,对于p大于18(1到5e5的最大素数因子个数)的情况,每一对都满足条件,O(1) ...

  6. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  7. HDU 4746 Mophues(莫比乌斯反演)题解

    题意: \(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\).\(n,m, ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  10. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

随机推荐

  1. ios开发之 -- 单例类

    单例模式是一种软件设计模式,再它的核心结构中指包含一个被称为单例类的特殊类. 通过单例模式可以保证系统中一个类只有一个势力而且该势力易于外界访问,从而方便对势力个数的控制并节约系统资源.如果希望在系统 ...

  2. Oracle中select使用别名

    1 .将字段用as转换成别名. 2 .直接在字段的名字后面跟别名. 3 .在字段后面用双引号引起的别名.   我的朋友 大鬼不动 最近访客 fhwlj kochiyas 大極星 Alz__ deser ...

  3. Fragment之间传数据

    1.用bundle存Bundle bundle = new Bundle();bundle.putString("cid1", classList.get(i).getId()); ...

  4. 教你在Ubuntu上体验Mac风格

    导读 老实说,我是个狂热的 Ubuntu 迷,我喜欢 Ubuntu 默认的 Unity 主题样式外观.此外,还有很多关于 Ubuntu 14.04 的漂亮图标主题样式 可用来美化默认的外观.但正如我上 ...

  5. 常用的一些javascript小技巧

    (转载)常用的一些javascript小技巧: http://bbs.blueidea.com/thread-2201069-1-1.html

  6. [NOI2008] 志愿者招募[流量平衡]

    288. [NOI2008] 志愿者招募 ★★★★   输入文件:employee.in   输出文件:employee.out   简单对比时间限制:2 s   内存限制:512 MB [问题描述] ...

  7. iOS 界面翻转切换动画

    [UIView  beginAnimations:nil context:NULL]; [UIView setAnimationCurve:UIViewAnimationCurveLinear]; [ ...

  8. Hibernate中双向的一对多关系

    何为双向,双向的意思就是你我之间可以互相通信(customer(1)和order(n)) 也就是说customer可以访问order,order也可以访问customer 二者构成了双向的关系 在Hi ...

  9. iOS 10 获取相册相机权限

            AVAudioSession *audioSession = [[AVAudioSession alloc]init]; [audioSession requestRecordPerm ...

  10. Limits on Table Column Count and Row Size Databases and Tables Table Size 最大行数

    MySQL :: MySQL 8.0 Reference Manual :: C.10.4 Limits on Table Column Count and Row Size https://dev. ...