题面

传送门

题解

后缀平衡树是个啥啊我不会啊……

那么我们来考虑一下\(SAM\)的做法好了

不难发现它的本义是要我们维护一棵\(trie\)树,并求出\(trie\)树上每一个节点到根的这段串的不同子串个数,而显然一个串的不同子串个数就是它的\(SAM\)上每一个节点的\(len[p]-len[fa[p]]\)之和

那么我们对这个\(trie\)建一个广义\(SAM\),这个\(SAM\)一定包含每一个路径的\(SAM\)

我们对每一个这棵\(trie\)上的每一个节点记录一个\(pos\),表示这个节点插入在\(SAM\)上的哪一个位置,然后把\(SAM\)的\(parent\)树记录一下\(dfs\)序

那么操作可以看做是在\(parent\)树上插入和删除节点,以插入为例,我们可以直接加上\(p\)到根节点的\(len\),但是这样有可能会算多,于是我们要减去\(p\)的前驱(以\(dfs\)序为顺序排列)和\(p\)的\(LCA\)的\(len\),以及和它的后继的\(LCA\)的\(len\)。但是这样可能又减多了,所以还需要加上它的前驱和后继的\(LCA\)的\(len\)

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define IT set<int>::iterator
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(char *s){
R int len=0;R char ch;while(((ch=getc())>'z'||ch<'a')&&ch!='-');
for(s[++len]=ch;(ch=getc())>='a'&&ch<='z'||ch=='-';s[++len]=ch);
return s[len+1]='\0',len;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R ll x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=2e5+5;
struct eg{int v,nx;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v){e[++tot]={v,head[u]},head[u]=tot;}
char t[N];int l[N],ch[N][26],fa[N],pos[N],st[N],dep[N],dfn[N],top[N],sz[N],son[N],rk[N];
int las=1,cnt=1,n,tim;set<int> s;ll res;
void ins(int c,int p=las){
if(ch[p][c]){
int q=ch[p][c];
if(l[q]==l[p]+1)las=q;
else{
int nq=las=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],4*26);
fa[nq]=fa[q],fa[q]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}else{
int np=las=++cnt;l[np]=l[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(l[q]==l[p]+1)fa[np]=q;
else{
int nq=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],4*26);
fa[nq]=fa[q],fa[q]=fa[np]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
}
}
void dfs1(int u){
sz[u]=1,dep[u]=dep[fa[u]]+1;
go(u){
dfs1(v),sz[u]+=sz[v];
sz[v]>sz[son[u]]?son[u]=v:0;
}
}
void dfs2(int u,int t){
top[u]=t,rk[dfn[u]=++tim]=u;
if(!son[u])return;
dfs2(son[u],t);
go(u)if(!top[v])dfs2(v,v);
}
int LCA(int u,int v){
while(top[u]!=top[v]){
dep[top[u]]<dep[top[v]]?(swap(u,v),0):0;
u=fa[top[u]];
}return dep[u]<dep[v]?u:v;
}
void update(int u,int op){
if(op==1)s.insert(u);
IT itl,itr,it;itl=itr=it=s.find(u);
res+=op*l[rk[u]];
if(itl!=s.begin())--itl,res-=op*l[LCA(rk[u],rk[*itl])];
if(itr!=--s.end())++itr,res-=op*l[LCA(rk[u],rk[*itr])];
if(itl!=it&&itr!=it)res+=op*l[LCA(rk[*itl],rk[*itr])];
if(op==-1)s.erase(u);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(t);
st[0]=1;
for(R int i=1,top=0;i<=n;++i)if(t[i]=='-')--top;
else las=st[top],ins(t[i]-'a'),pos[i]=st[++top]=las;
fp(i,2,cnt)add(fa[i],i);
dfs1(1),dfs2(1,1);
for(R int i=1,top=0;i<=n;++i){
if(t[i]=='-')update(dfn[pos[st[top--]]],-1);
else update(dfn[pos[st[++top]=i]],1);
print(res);
}
return Ot(),0;
}

【bzoj5084】 hashit(广义SAM+set)的更多相关文章

  1. bzoj5084 hashit 广义SAM+树链的并

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5084 题解 考虑平常对于静态问题,我们应该如何用 SAM 求本质不同的子串个数. 对于一个常规 ...

  2. 【bzoj5084】hashit 广义后缀自动机+树链的并+STL-set

    题目描述 你有一个字符串S,一开始为空串,要求支持两种操作 在S后面加入字母C 删除S最后一个字母 问每次操作后S有多少个两两不同的连续子串 输入 一行一个字符串Q,表示对S的操作 如果第i个字母是小 ...

  3. 【HDU 4436】 str2int (广义SAM)

    str2int Problem Description In this problem, you are given several strings that contain only digits ...

  4. 【BZOJ 3926】 [Zjoi2015]诸神眷顾的幻想乡 (广义SAM)

    3926: [Zjoi2015]诸神眷顾的幻想乡 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 974  Solved: 573 Descriptio ...

  5. 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)

    3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...

  6. luogu3346 诸神眷顾的幻想乡 (广义SAM)

    首先,让每一个叶节点做一次树根的话,每个路径一定至少有一次会变成直上直下的 于是对于每个叶节点作为根产生的20个trie树,把它们建到同一个广义SAM里 建法是对每个trie dfs去建,last就是 ...

  7. loj#6031. 「雅礼集训 2017 Day1」字符串(SAM 广义SAM 数据分治)

    题意 链接 Sol \(10^5\)次询问每次询问\(10^5\)个区间..这种题第一感觉就是根号/数据分治的模型. \(K\)是个定值这个很关键. 考虑\(K\)比较小的情况,可以直接暴力建SAM, ...

  8. Luogu P3181 [HAOI2016]找相同字符 广义$SAM$

    题目链接 \(Click\) \(Here\) 设一个串\(s\)在\(A\)中出现\(cnt[s][1]\)次,在\(B\)中出现\(cnt[s][2]\)次,我们要求的就是: \[\sum cnt ...

  9. BZOJ5084[hashit]

    题解: 后缀自动机 我们可以通过建立trie 把询问变成询问一些点的并 把trie建立成SAM和广义SAM基本相同,就是在父亲和儿子之间连边 然后就变成了询问树链的并 我们可以发现答案=sigma d ...

随机推荐

  1. Django实现支付宝付款和微信支付

    支付宝支付和微信支付是当今互联网产品常用的功能,我使用Django Rest Framework实现了网页上支付宝支付和微信支付的一个通用服务,提供rpc接口给其他服务,包括获取支付宝支付页面url的 ...

  2. 工具类: 用于模拟HTTP请求中GET/POST方式

    package com.jarvis.base.util; import java.io.BufferedReader; import java.io.IOException; import java ...

  3. C#隐式类型局部变量&隐式类型数组

    [隐式类型局部变量] 可以赋予局部变量推断“类型”var 而不是显式类型.var 关键字指示编译器根据初始化语句右侧的表达式推断变量的类型.推断类型可以是内置类型.匿名类型.用户定义类型或 .NET ...

  4. C#匿名类型 - Anonymous Types

    [C#匿名类型 - Anonymous Types] Anonymous types provide a convenient way to encapsulate a set of read-onl ...

  5. Python基础:面向对象基础 (一) 类及其属性和魔法方法

    定义类,添加和获取对象属性 # 定义类 格式如下 # class 类名: # 方法列表 # 新式类定义形式 # info 是一个实例方法,第一个参数一般是self,表示实例对象本身 class Her ...

  6. 69. Sqrt(x) (Divide-and-Conquer)

    Implement int sqrt(int x). Compute and return the square root of x. 注意: 计算平方的时候可能会溢出,所以mid要定义为long 另 ...

  7. Codeforces 1154G 枚举

    题意:给你一堆数,问其中lcm最小的一对数是什么? 思路:因为lcm(a, b) = a * b / gcd(a, b), 所以我们可以考虑暴力枚举gcd, 然后只找最小的a和b,去更新答案即可. 数 ...

  8. 621. Task Scheduler CPU任务间隔分配器

    [抄题]: Given a char array representing tasks CPU need to do. It contains capital letters A to Z where ...

  9. Java 依赖注入标准(JSR-330)简介

    作者:88250 ,Vanessa 时间:2009 年 11 月 19 日      Java 依赖注入标准(JSR-330,Dependency Injection for Java)1.0 规范已 ...

  10. CS API 测试3

      //添加二级存储 http://192.168.150.16:8080/client/api? command=addSecondaryStorage& zoneId=7e34afc4-6 ...