http://electronicdesign.com/power/simple-addition-permits-voltage-control-dc-dc-converters-output

In a standard dc-dc converter, a resistor divider typically defines a fixed output voltage. However, applications like programmable output voltage power supplies and motor control circuits require dynamic control of the dc-dc converter’s output voltage. The circuit described here allows control of the converter’s output voltage, VOut, with a control voltage, VC.

In a conventional dc-dc buck converter, VOut is:

so VOut is fixed by the values of R1 and R2 (Fig. 1).

1. The output voltage in a conventional dc-dc buck converter is fixed and depends on the resistor divider, R1/R2.

The added circuitry in Figure 2 enables users to control the same dc-dc converter’s output voltage using VC.

2. The added circuitry in this version of the dc-dc converter permits control of VOut by varying a control voltage, VC.

In this case, R2 is not connected to the ground but, rather, to Vr. Equation 1 then becomes:

VOUT = VFB + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = VFB - VR + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = ( VFB - VR ) * R2 / R2  + ( VFB - VR ) * R1 / R2

VOUT - VR = ( VFB - VR ) * ( R2 +  R1 ) / R2

Since R1 = 20 kΩ and R2 = 10 kΩ, Equation 2 can be simplified to:

VOut – Vr = 3(Vfb – Vr)(3)

or:

VOut = 3 Vfb – 2 Vr(4)

( VC - V- ) / R4 = ( V- - VR ) / R3 ( I4 = I3 )

VC / R4 - V- / R4 = V- / R3 - VR / R3

V- / R4 + V- / R3 = VC / R4 + VR / R3

V- * ( R3 + R4 ) / ( R3 * R4 ) = ( VC * R3 + VR * R4 )/ ( R3 * R4 )

V- * ( R3 + R4 )  = ( VC * R3 + VR * R4 )

VR * R4 =  V- * ( R3 + R4 ) - VC * R3

V- = V+ = VREF : VR * R4 =  VREF * ( R3 + R4 ) - VC * R3

R3 = R4 : VR * R3 =  VREF * ( R3 + R3 ) - VC * R3

VR = VREF * 2 - VC

R3 and R4 have the same value, 10 kΩ, so amplifier U2’s output voltage is:

Vr = 2 VRef – VC(5)

where VRef is the reference voltage generated by U3 after resistor divider R7/R8.

VOut = 3 Vfb – 2 Vr(4)

Combining Equation 4 and Equation 5:

VOut = 3 Vfb – 4 VRef + 2 V(6)

To simplify Equation 6, choose components that make:

3 Vfb = 4 VRef(7)

Then Equation 6 becomes:

VOut = 2 V(8)      

The internal voltage reference of U1 is 0.8 V. ( TPS54332 )

VREF = 3VFB / 4 = 3 *0.8 / 4 = 0.6V

LM4040D25 : 2.5V : By choosing R7 = 10 kΩ and R8 = 3.16 kΩ, VRef = 0.6 V, satisfying Equation 7.

Finally, C1 lowers U2’s output impedance at high frequencies,
maintaining the stability of U1’s feedback loop.

The added circuitry allows users to control the buck converter’s output voltage,

VOut, in the range of 0 to 5 V with a control voltage, VC, in the range of 0 to 2.5 V.

Similar circuitry can be designed for use with a boost converter,

or any other dc-dc converter, as long as its feedback voltage pin is accessible.

Using an operational amplifier in the feedback path

A very flexible way of influencing the feedback pin while not being so restricted
in terms of the control signal is to use an operational amplifier.

It can be used to inject some current into the feedback divider which then
forces the control loop of the power supply to change the output voltage.

This way the output voltage can be varied continuously as a function
of the current injected into the feedback node.

Often, the information controlling the output voltage change on a power supply in sensor applications
as well as motor drive applications is an analog signal.

Depending on the nature of this control signal, the circuit around the operational amplifier
can be defined to set the lowest voltage output independent of what the control signal range is.

Also there is great flexibility in the ratio of control signal change to change in the output voltage.

Figure 3 shows an amplifier circuit in the feedback path of a switching power supply.

The difference amplifier uses an operational amplifier and four additional resistors R1 through R4.

The output of the operational amplifier acts like a voltage source.

In order to inject a current into the feedback node this voltage is converted into a current by resistor R5.

It equals the internal impedance of the current source which the operational amplifier and R5 constitute.

Together with the feedback resistors R6 and R7 any output voltage changes
can be set based on almost any given control signal.

The signal voltage V1 is the control signal.
The voltage V2 is a reference voltage for the operational amplifier.

It should be a fairly constant voltage since variations on it will
change the output voltage of the power supply as well.

If a fairly precise rail in the system is available it can generally be used.
A good solution is a low voltage reference IC such as National Semiconductors LM4040.

Simple Addition Permits Voltage Control Of DC-DC Converter's Output的更多相关文章

  1. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  2. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  3. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  4. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  7. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. Excel---导出与读取(大数据量)

    Excel下载 首先大数据量的下载,一般的Excel下载操作是不可能完成的,会导致内存溢出 SXSSFWorkbook 是专门用于大数据了的导出 构造入参rowAccessWindowSize 这个参 ...

  2. ASCII-->Ansi-->Unicode-->UTF8 关于编码 自己的总结

    各种不同的编码 无非就是效率 最大化. 我猜测编码的进化流程: ASCII(American Standard Code for Information Interchange)----满足了美国和西 ...

  3. 用JDK自带的监控工具jconsole来监控程序运行

    工具目录:C:\Program Files\Java\jdk1.6.0_06\bin\jconsole.exe 效果如下:监控类ThreadPoolExecutorTest 的运行 选择我们运行的程序 ...

  4. 常用 Java Profiling 工具的分析与比较

    转自:http://www.ibm.com/developerworks/cn/java/j-lo-profiling/index.html 在 Java 程序的开发过程中,不可避免地会遇到内存使用. ...

  5. 【转】windows下安装Python虚拟环境virtualenvwrapper-win

    由于Python的版本众多,还有Python2和Python3的争论,因此有些软件包或第三方库就容易出现版本不兼容的问题. 通过 virtualenv 这个工具,就可以构建一系列虚拟的Python环境 ...

  6. 【伪暴力+智商剪枝】Codeforces Round #489 (Div. 2) D

    失踪人口突然回归……orz.题解还是有必要写的,虽然估计只有自己(?自己也不一定看得懂)看得懂. 题目链接:http://codeforces.com/contest/992/problem/D 题目 ...

  7. set集合玩法、三目运算

    set是无序的,无法用下标获取值 创建set二种方式 1.第一种 s1=set()   #创建一个空的set,看下面就知道为什么要这么创建一个空的集合 2.第二种 s2={11,22,33,44} # ...

  8. HTTP 415错误 Unsupported Content-Type

    报如下错误: { "badMediaType": { "message": "Unsupported Content-Type", &quo ...

  9. Prime Number CodeForces - 359C (属于是数论)

    Simon has a prime number x and an array of non-negative integers a1, a2, ..., an. Simon loves fracti ...

  10. Scrapy学习篇(三)之创建项目

    创建项目 创建项目是爬取内容的第一步,之前已经讲过,Scrapy通过scrapy startproject <project_name>命令来在当前目录下创建一个新的项目. 下面我们创建一 ...