http://electronicdesign.com/power/simple-addition-permits-voltage-control-dc-dc-converters-output

In a standard dc-dc converter, a resistor divider typically defines a fixed output voltage. However, applications like programmable output voltage power supplies and motor control circuits require dynamic control of the dc-dc converter’s output voltage. The circuit described here allows control of the converter’s output voltage, VOut, with a control voltage, VC.

In a conventional dc-dc buck converter, VOut is:

so VOut is fixed by the values of R1 and R2 (Fig. 1).

1. The output voltage in a conventional dc-dc buck converter is fixed and depends on the resistor divider, R1/R2.

The added circuitry in Figure 2 enables users to control the same dc-dc converter’s output voltage using VC.

2. The added circuitry in this version of the dc-dc converter permits control of VOut by varying a control voltage, VC.

In this case, R2 is not connected to the ground but, rather, to Vr. Equation 1 then becomes:

VOUT = VFB + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = VFB - VR + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = ( VFB - VR ) * R2 / R2  + ( VFB - VR ) * R1 / R2

VOUT - VR = ( VFB - VR ) * ( R2 +  R1 ) / R2

Since R1 = 20 kΩ and R2 = 10 kΩ, Equation 2 can be simplified to:

VOut – Vr = 3(Vfb – Vr)(3)

or:

VOut = 3 Vfb – 2 Vr(4)

( VC - V- ) / R4 = ( V- - VR ) / R3 ( I4 = I3 )

VC / R4 - V- / R4 = V- / R3 - VR / R3

V- / R4 + V- / R3 = VC / R4 + VR / R3

V- * ( R3 + R4 ) / ( R3 * R4 ) = ( VC * R3 + VR * R4 )/ ( R3 * R4 )

V- * ( R3 + R4 )  = ( VC * R3 + VR * R4 )

VR * R4 =  V- * ( R3 + R4 ) - VC * R3

V- = V+ = VREF : VR * R4 =  VREF * ( R3 + R4 ) - VC * R3

R3 = R4 : VR * R3 =  VREF * ( R3 + R3 ) - VC * R3

VR = VREF * 2 - VC

R3 and R4 have the same value, 10 kΩ, so amplifier U2’s output voltage is:

Vr = 2 VRef – VC(5)

where VRef is the reference voltage generated by U3 after resistor divider R7/R8.

VOut = 3 Vfb – 2 Vr(4)

Combining Equation 4 and Equation 5:

VOut = 3 Vfb – 4 VRef + 2 V(6)

To simplify Equation 6, choose components that make:

3 Vfb = 4 VRef(7)

Then Equation 6 becomes:

VOut = 2 V(8)      

The internal voltage reference of U1 is 0.8 V. ( TPS54332 )

VREF = 3VFB / 4 = 3 *0.8 / 4 = 0.6V

LM4040D25 : 2.5V : By choosing R7 = 10 kΩ and R8 = 3.16 kΩ, VRef = 0.6 V, satisfying Equation 7.

Finally, C1 lowers U2’s output impedance at high frequencies,
maintaining the stability of U1’s feedback loop.

The added circuitry allows users to control the buck converter’s output voltage,

VOut, in the range of 0 to 5 V with a control voltage, VC, in the range of 0 to 2.5 V.

Similar circuitry can be designed for use with a boost converter,

or any other dc-dc converter, as long as its feedback voltage pin is accessible.

Using an operational amplifier in the feedback path

A very flexible way of influencing the feedback pin while not being so restricted
in terms of the control signal is to use an operational amplifier.

It can be used to inject some current into the feedback divider which then
forces the control loop of the power supply to change the output voltage.

This way the output voltage can be varied continuously as a function
of the current injected into the feedback node.

Often, the information controlling the output voltage change on a power supply in sensor applications
as well as motor drive applications is an analog signal.

Depending on the nature of this control signal, the circuit around the operational amplifier
can be defined to set the lowest voltage output independent of what the control signal range is.

Also there is great flexibility in the ratio of control signal change to change in the output voltage.

Figure 3 shows an amplifier circuit in the feedback path of a switching power supply.

The difference amplifier uses an operational amplifier and four additional resistors R1 through R4.

The output of the operational amplifier acts like a voltage source.

In order to inject a current into the feedback node this voltage is converted into a current by resistor R5.

It equals the internal impedance of the current source which the operational amplifier and R5 constitute.

Together with the feedback resistors R6 and R7 any output voltage changes
can be set based on almost any given control signal.

The signal voltage V1 is the control signal.
The voltage V2 is a reference voltage for the operational amplifier.

It should be a fairly constant voltage since variations on it will
change the output voltage of the power supply as well.

If a fairly precise rail in the system is available it can generally be used.
A good solution is a low voltage reference IC such as National Semiconductors LM4040.

Simple Addition Permits Voltage Control Of DC-DC Converter's Output的更多相关文章

  1. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  2. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  3. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  4. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  7. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. centos-testlink安装使用手册

    1.新建虚拟机设置 网卡必须选择ovirtmgmt模式 2.Centos6.3系统安装 说明: 1.CentOS 6.3系统镜像有两个,安装系统只用到第一个镜像即CentOS-6.3-i386-bin ...

  2. SpringBoot微服务

    在企业级软件的架构模型上,我们主要讨论下SOA与微服务架构. SOA的全称是Service-Oriented Architecture,可译为“面向服务的架构”,它是一个组件模型,将应用程序的不同功能 ...

  3. jsonpath for js

    /** * @license * JSONPath 0.8.0 - XPath for JSON * * Copyright (c) 2007 Stefan Goessner (goessner.ne ...

  4. HTML文件编码

    为了防止中文乱码,一般在网页头文件中加入 <meta http-equiv="Content-Type" content="text/html; charset=u ...

  5. /bin、/sbin、/usr/bin、/usr/sbin目录Linux执行文档的区别

    /bin./sbin./usr/bin./usr/sbin目录的区别   在linux下我们经常用到的四个应用程序的目录是/bin./sbin./usr/bin./usr/sbin .而四者存放的文件 ...

  6. js正则获取url参数,包含hash[#]和search[?]两种通用

    function getQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...

  7. bzoj 1225 dfs + 一点点数论

    思路:有一个公式  如果 x = a1 ^ b1 * a2 ^ b2 * ...... * an ^ bn 其中ai为质数,那么总共的因子个数为 (b1 + 1) * (b2 + 1) *....* ...

  8. saltstack系统初始化(九)

    一.系统初始化需要的配置 当我们的服务器上架并安装好操作系统后,都会有一些基础的操作,所以生产环境中使用SaltStack,建议将所有服务器都会涉及的基础配置或者软件部署归类放在base环境下.此处, ...

  9. karma+requirejs

    下面的介绍以karma能正常运行为前提,看karma系列文章:http://www.cnblogs.com/laixiangran/tag/Karma/ 目录结构 步骤 安装 npm install ...

  10. 【Java】Java中常用的String方法

    本文转载于:java中常用的String方法 1 length()字符串的长度 String a = "Hello Word!"; System.out.println(a.len ...