http://electronicdesign.com/power/simple-addition-permits-voltage-control-dc-dc-converters-output

In a standard dc-dc converter, a resistor divider typically defines a fixed output voltage. However, applications like programmable output voltage power supplies and motor control circuits require dynamic control of the dc-dc converter’s output voltage. The circuit described here allows control of the converter’s output voltage, VOut, with a control voltage, VC.

In a conventional dc-dc buck converter, VOut is:

so VOut is fixed by the values of R1 and R2 (Fig. 1).

1. The output voltage in a conventional dc-dc buck converter is fixed and depends on the resistor divider, R1/R2.

The added circuitry in Figure 2 enables users to control the same dc-dc converter’s output voltage using VC.

2. The added circuitry in this version of the dc-dc converter permits control of VOut by varying a control voltage, VC.

In this case, R2 is not connected to the ground but, rather, to Vr. Equation 1 then becomes:

VOUT = VFB + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = VFB - VR + ( ( VFB - VR ) / R2 ) * R1

VOUT - VR = ( VFB - VR ) * R2 / R2  + ( VFB - VR ) * R1 / R2

VOUT - VR = ( VFB - VR ) * ( R2 +  R1 ) / R2

Since R1 = 20 kΩ and R2 = 10 kΩ, Equation 2 can be simplified to:

VOut – Vr = 3(Vfb – Vr)(3)

or:

VOut = 3 Vfb – 2 Vr(4)

( VC - V- ) / R4 = ( V- - VR ) / R3 ( I4 = I3 )

VC / R4 - V- / R4 = V- / R3 - VR / R3

V- / R4 + V- / R3 = VC / R4 + VR / R3

V- * ( R3 + R4 ) / ( R3 * R4 ) = ( VC * R3 + VR * R4 )/ ( R3 * R4 )

V- * ( R3 + R4 )  = ( VC * R3 + VR * R4 )

VR * R4 =  V- * ( R3 + R4 ) - VC * R3

V- = V+ = VREF : VR * R4 =  VREF * ( R3 + R4 ) - VC * R3

R3 = R4 : VR * R3 =  VREF * ( R3 + R3 ) - VC * R3

VR = VREF * 2 - VC

R3 and R4 have the same value, 10 kΩ, so amplifier U2’s output voltage is:

Vr = 2 VRef – VC(5)

where VRef is the reference voltage generated by U3 after resistor divider R7/R8.

VOut = 3 Vfb – 2 Vr(4)

Combining Equation 4 and Equation 5:

VOut = 3 Vfb – 4 VRef + 2 V(6)

To simplify Equation 6, choose components that make:

3 Vfb = 4 VRef(7)

Then Equation 6 becomes:

VOut = 2 V(8)      

The internal voltage reference of U1 is 0.8 V. ( TPS54332 )

VREF = 3VFB / 4 = 3 *0.8 / 4 = 0.6V

LM4040D25 : 2.5V : By choosing R7 = 10 kΩ and R8 = 3.16 kΩ, VRef = 0.6 V, satisfying Equation 7.

Finally, C1 lowers U2’s output impedance at high frequencies,
maintaining the stability of U1’s feedback loop.

The added circuitry allows users to control the buck converter’s output voltage,

VOut, in the range of 0 to 5 V with a control voltage, VC, in the range of 0 to 2.5 V.

Similar circuitry can be designed for use with a boost converter,

or any other dc-dc converter, as long as its feedback voltage pin is accessible.

Using an operational amplifier in the feedback path

A very flexible way of influencing the feedback pin while not being so restricted
in terms of the control signal is to use an operational amplifier.

It can be used to inject some current into the feedback divider which then
forces the control loop of the power supply to change the output voltage.

This way the output voltage can be varied continuously as a function
of the current injected into the feedback node.

Often, the information controlling the output voltage change on a power supply in sensor applications
as well as motor drive applications is an analog signal.

Depending on the nature of this control signal, the circuit around the operational amplifier
can be defined to set the lowest voltage output independent of what the control signal range is.

Also there is great flexibility in the ratio of control signal change to change in the output voltage.

Figure 3 shows an amplifier circuit in the feedback path of a switching power supply.

The difference amplifier uses an operational amplifier and four additional resistors R1 through R4.

The output of the operational amplifier acts like a voltage source.

In order to inject a current into the feedback node this voltage is converted into a current by resistor R5.

It equals the internal impedance of the current source which the operational amplifier and R5 constitute.

Together with the feedback resistors R6 and R7 any output voltage changes
can be set based on almost any given control signal.

The signal voltage V1 is the control signal.
The voltage V2 is a reference voltage for the operational amplifier.

It should be a fairly constant voltage since variations on it will
change the output voltage of the power supply as well.

If a fairly precise rail in the system is available it can generally be used.
A good solution is a low voltage reference IC such as National Semiconductors LM4040.

Simple Addition Permits Voltage Control Of DC-DC Converter's Output的更多相关文章

  1. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  2. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  3. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  4. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  7. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. angular项目中使用Primeng

    1.第一步把依赖添加到项目中 npm install primeng --save npm install @angular/animations --save npm install font-aw ...

  2. POJ 2230 Watchcow(欧拉回路:输出点路径)

    题目链接:http://poj.org/problem?id=2230 题目大意:给你n个点m条边,Bessie希望能走过每条边两次,且两次的方向相反,让你输出以点的形式输出路径. 解题思路:其实就是 ...

  3. CEPH 使用SSD日志盘+SATA数据盘, 随OSD数目递增对性能影响的递增测试

    最近建设新机房,趁项目时间空余较多,正好系统的测试一下CEPH集群性能随OSD数目的变化情况, 新ceph集群测试结果如下: 1)4k随机读在3/6/9osd host下的性能差不多,吞吐量约50~6 ...

  4. Jmeter------将JDBC Request的查询结果作为另一个接口的请求参数

    一.前言 jmeter已配置连接成功数据库,不会的可查看:https://www.cnblogs.com/syw20170419/p/9832402.html 二.需求 将JDBC Request的r ...

  5. [你必须知道的.NET]第十九回:对象创建始末(下)

    本文将介绍以下内容: 对象的创建过程 内存分配分析 内存布局研究 接上回[第十八回:对象创建始末(上)],继续对对象创建话题的讨论>>> 2.2 托管堆的内存分配机制 引用类型的实例 ...

  6. C# 使用UDP组播实现局域网桌面共享

    最近需要在产品中加入桌面共享的功能,暂时不用实现远程控制:参考了园子里的一些文章,加入了一些自己的修改. 需求:将一台机器的桌面通过网络显示到多个客户端的屏幕上,显示内容可能为PPT,Word文档之类 ...

  7. spirng boot打包成war部署

    最近一段时间一直在研究和学习springboot,感觉其十分便利好用.以前使用spring搭建项目都整好多繁琐的配置,使用了springboot后这些繁琐的配置统统都不要了.但就是对springboo ...

  8. svm 中采用自动搜索参数的方式获得参数值

    载时自http://blog.csdn.net/u011177305/article/details/46458801?locationNum=1 OpenCV中SVM类是提供了优化参数值功能的,下面 ...

  9. Python全栈开发之2、运算符与基本数据结构

    运算符 一.算数元算: 读者可以跟着我按照下面的代码重新写一遍,其中需要注意的是,使用除的话,在python3中可以直接使用,结果是4没有任何问题,但是在python2中使用的话,则不行,比如 9/2 ...

  10. mvc bundle的介绍及使用 转载自 http://www.ityouzi.com/archives/mvc-bundleconfig.html

    Asp.Net MVC4 BundleConfig文件合并.压缩,网站优化加速 浏览器在向服务器发送请求的时候,请求的文件链接数量是有限制的,如果页面文件少就没有什么问题了,如果文件太多就会导致链接失 ...