跳台阶

题目描述

  一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。


实现代码

function jumpFloor(number)
{
if (number<0){
return -1;
}else if(number <=2){
return number
}
var arr = [];
arr[0] = 1;
arr[1] = 2;
for(var i = 2; i < number; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr[number-1];
}

思路

本题的前提是只有一次1阶或者2阶的跳法:

  1. 假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
  2. 假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2);
  3. 由假设得出总跳法为:f(n)=f(n-1)+f(n-2);
  4. 当台阶只有一阶时,f(1)=1,只有两阶时时,f(2)=2;
  5. 到这大家估计都看出来了,最终得出的是一个斐波那契数列:

    n=1, f(n)=1

    n=2, f(n)=2

    n>2,且为整数, f(n)=f(n-1)+f(n-2)

《剑指offer》— JavaScript(8)跳台阶的更多相关文章

  1. 剑指 Offer 10- II. 青蛙跳台阶问题

    剑指 Offer 10- II. 青蛙跳台阶问题 Offer 10- II 题目描述: 动态规划方程: 循环求余: 复杂度分析: package com.walegarrett.offer; impo ...

  2. 【剑指offer】09-2跳台阶,C++实现

    原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记 1.题目 # 一只青蛙一次可以跳1级台阶,也可以跳2级.求该青蛙跳n级的台阶总共有多少种跳法. 2.思路 # 跳0级 ...

  3. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  4. Go语言实现:【剑指offer】变态跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2 ...

  5. 剑指OFFER之变态跳台阶(九度OJ1389)

    题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1 ...

  6. 剑指offer:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要 ...

  7. [剑指offer] 8+9. 跳台阶+变态跳台阶 (递归 时间复杂度)

    跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*5 ...

  8. 剑指offer 9-10:青蛙跳台阶与Fibonacii数列

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 问题分析 我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n). ...

  9. 剑指offer 08:跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). public class Solution { public int ...

  10. 剑指Offer 9. 变态跳台阶 (递归)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/ ...

随机推荐

  1. KRKR基础篇(二)

    这里介绍一些krkr的语法规范,具体的命令含义及用法以后再叙述 一:kag语法及基本概念 KAG使用的剧本语言为KAG Script,文件扩展名为.ks 脚本内的文字除  注释,  命令 ,  段落标 ...

  2. 3.5星|《算法霸权》:AI、算法、大数据在美国的阴暗面

    算法霸权 作者在华尔街对冲基金德绍集团担任过金融工程师,后来去银行做过风险分析,再后来去做旅游网站的用户分析.后来辞职专门揭露美国社会生活背后的各种算法的阴暗面. 书中提到的算法的技术缺陷,我归纳为两 ...

  3. Linux系统网络安装——基于pxe+dhcp+nfs+tftp+kickstart

    原文发表于:2010-09-05 转载至cu于:2012-07-21 一.原理简介 PXE(preboot execute environment)工作于Client/Server的网络模式,支持工作 ...

  4. 云主机启动提示Booting from Hard Disk GRUB

    版本:Openstack ocata 系统:centos7.3 环境:VMware workstation12 解决方法: 或者

  5. LVM缩小根分区

    逻辑卷不是根分区都可以在线扩容和缩小 根分区是可以在线扩容,但不可以在线缩小 Linux系统进入救援模式 依次选择: 欢迎界面 ---------- Rescue installed system C ...

  6. Literature Books

    Lean In (Sheryl Sandberg) Option B (Sheryl Sandberg) Ready Player One

  7. Java微笔记(7)

    String 类常用方法 注意点: 字符串 str 中字符的索引从0开始,范围为 0 到 str.length()-1 使用 indexOf 进行字符或字符串查找时,如果匹配返回位置索引:如果没有匹配 ...

  8. IP ,路由

    ifconfig 命令       ip信息   enp0s3: flags=4163<UP(已经启用),BROADCAST(支持广播),RUNNING,MULTICAST(支持多播)> ...

  9. 安装php先行库

    libmcrypt libconv mhash  ./configure --prefix=/usr/local mcrypt 安装完成后在当前目录还要 /sbin/ldconfig ./config ...

  10. PDO笔记

    <?php/* * 查询操作主要是PDO::query().PDO::exec().PDO::prepare().PDO::query()主要是用于有记录结果返回的操作,特别是SELECT操作, ...