传送门

Description

给你一个数列\(A\),你可以选择任意一个前缀和任意一个后缀,前缀后缀可重合。给他们乘\(-1\)。求最大能获得的序列和。

Input

第一行是一个数\(n\)代表数列长度

第二行\(n\)个数字,代表序列的元素

Output

一个数字代表答案

Hint

\(1~\leq~n~\leq~10^5\)

Solution

发现重合的部分相当于没有修改。于是不妨设前后缀没有重合。

设修改的原序列前缀和为\(A\),后缀和为\(B\),未修改的部分为\(C\),序列和为\(S\),则有\(A+B+C=S\)。

题目要求最大化\(-(A+B)+C\)。又因为\(A+B=S-C\)。

于是要最大化\(2C-S\)。发现\(S\)是一个不变量,于是要最大化\(C\)。即求一个最大字段和。显然可以DP求解。于是本题可以解决了。

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = 100010; int n,ans,sum;
int MU[maxn],frog[maxn]; int main() {
qr(n);
for(rg int i=1;i<=n;++i) qr(MU[i]);
for(rg int i=1;i<=n;++i) {
frog[i]=mmax(frog[i],frog[i-1]+MU[i]);
ans=mmax(ans,frog[i]);
sum+=MU[i];
}
qw((ans<<1)-sum,'\n',true);
return 0;
}

Summary

遇到最大化一个值的题目,可以通过数学推导变成单变量极值问题,然后DP或者数学求解。

【极值问题】【CF33C】 Wonderful Randomized Sum的更多相关文章

  1. CF33C Wonderful Randomized Sum 题解

    原题链接 简要题意: 你可以无限次的把该数组的一个前缀和后缀 \(\times -1\),问最终的最大序列和. 这题盲目WA了数次才知道本质 这题89个数据吊打std CF真好啊,发现一个错后面就不测 ...

  2. codeforces每日一题1-10

    目录: 1.1093D. Beautiful Graph(DFS染色) 2.514C - Watto and Mechanism(Tire) 3.69E.Subsegments(STL) 4.25C. ...

  3. E - Rebuild UVALive - 7187 (二次函数极值问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of ...

  4. LeetCode - Two Sum

    Two Sum 題目連結 官網題目說明: 解法: 從給定的一組值內找出第一組兩數相加剛好等於給定的目標值,暴力解很簡單(只會這樣= =),兩個迴圈,只要找到相加的值就跳出. /// <summa ...

  5. Leetcode 笔记 113 - Path Sum II

    题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...

  6. Leetcode 笔记 112 - Path Sum

    题目链接:Path Sum | LeetCode OJ Given a binary tree and a sum, determine if the tree has a root-to-leaf ...

  7. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  8. BZOJ 3944 Sum

    题目链接:Sum 嗯--不要在意--我发这篇博客只是为了保存一下杜教筛的板子的-- 你说你不会杜教筛?有一篇博客写的很好,看完应该就会了-- 这道题就是杜教筛板子题,也没什么好讲的-- 下面贴代码(不 ...

  9. [LeetCode] Path Sum III 二叉树的路径和之三

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

随机推荐

  1. Jmeter如何做接口测试

    最近在学习Jmeter,记录下来,与大家分享. 1. 打开Jmeter,我用的是5.0版本,打开后如下图所示: 2. 右键测试计划,添加 - 线程(用户) - 线程组,如下如图所示: 3. 右键线程组 ...

  2. [转]操作系统Unix、Windows、Mac OS、Linux的故事

    [写得很江湖气,可惜找不到原作者了] 文章转自:http://blog.csdn.net/wenmingchan/article/details/49925379 http://www.jb51.ne ...

  3. CentOS 下 MySQL 5.6 基于 RPM 的下载、安装、配置

    CentOS 下 MySQL 5.6 基于 RPM 的下载.安装.配置 系统: CentOS 7 x86_64 MySQL 版本: 5.6.40 安装方式: RPM 下载 下载地址 操作系统 选择 R ...

  4. sql 命令使用简单记录

    半个月前就想记下用过的SQL命令的!!!     主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349   左关联: se ...

  5. mui搜索框 搜索点击事件

    <div class="mui-input-row mui-search"> <input type="search" class=" ...

  6. JAVA学习笔记--简介几个常见关键字static、final、this、super

    一.static static(静态的),可以放在类.方法.字段之前. 通常,当创建类时,就是在描述那个类的外观与行为.除非用 new 创建那个类的对象,否则,实际上并未获得任何对象.执行 new 来 ...

  7. leetcode12_C++整数转罗马数字

    小弟不才,有错误或者更好解,求留言. 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, ...

  8. ES6的新特性(14)——Iterator 和 for...of 循环

    Iterator 和 for...of 循环 Iterator(遍历器)的概念 JavaScript 原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6 又添加了Ma ...

  9. php 通过curl上传图片

    通过curl上传图片 PHP < 5.5: 使用 目前使用的php版本 7.1 测试无法使用 前面加@ 的方法上传文件 ,查找资料 使用 curl_setopt($ch,CURLOPT_SAFE ...

  10. javascript方法扩展

    String.prototype.startWith = function(str){ return str.indexOf(str) == 0; }; var str = "abc&quo ...