import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
%matplotlib inline np.random.seed(2) from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import itertools from keras.utils.np_utils import to_categorical # convert to one-hot-encoding
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau sns.set(style='white', context='notebook', palette='deep')
# Load the data
train = pd.read_csv("F:\\kaggleDataSet\MNSI\\train.csv")
test = pd.read_csv("F:\\kaggleDataSet\MNSI\\test.csv")
Y_train = train["label"]

# Drop 'label' column
X_train = train.drop(labels = ["label"],axis = 1) # free some space
del train g = sns.countplot(Y_train) Y_train.value_counts()

# Check the data
X_train.isnull().any().describe()

test.isnull().any().describe()

# Normalize the data
X_train = X_train / 255.0
test = test / 255.0
# Reshape image in 3 dimensions (height = 28px, width = 28px , canal = 1)
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1)
# Encode labels to one hot vectors (ex : 2 -> [0,0,1,0,0,0,0,0,0,0])
Y_train = to_categorical(Y_train, num_classes = 10)
# Set the random seed
random_seed = 2
# Split the train and the validation set for the fitting
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed)
# Some examples
g = plt.imshow(X_train[0][:,:,0])

# Set the CNN model
# my CNN architechture is In -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out model = Sequential() model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu', input_shape = (28,28,1)))
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25)) model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
# Define the optimizer
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
# Compile the model
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
# Set a learning rate annealer
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
epochs = 1 # Turn epochs to 30 to get 0.9967 accuracy
batch_size = 86
# Without data augmentation i obtained an accuracy of 0.98114
history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs,
validation_data = (X_val, Y_val), verbose = 2)

# With data augmentation to prevent overfitting (accuracy 0.99286)

datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
zoom_range = 0.1, # Randomly zoom image
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=False, # randomly flip images
vertical_flip=False) # randomly flip images datagen.fit(X_train)
# Fit the model
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data = (X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction])

# Plot the loss and accuracy curves for training and validation
fig, ax = plt.subplots(2,1)
ax[0].plot(history.history['loss'], color='b', label="Training loss")
ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0])
legend = ax[0].legend(loc='best', shadow=True) ax[1].plot(history.history['acc'], color='b', label="Training accuracy")
ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy")
legend = ax[1].legend(loc='best', shadow=True)

# Look at confusion matrix 

def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes) if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black") plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label') # Predict the values from the validation dataset
Y_pred = model.predict(X_val)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(Y_val,axis = 1)
# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
# plot the confusion matrix
plot_confusion_matrix(confusion_mtx, classes = range(10))

# Display some error results 

# Errors are difference between predicted labels and true labels
errors = (Y_pred_classes - Y_true != 0) Y_pred_classes_errors = Y_pred_classes[errors]
Y_pred_errors = Y_pred[errors]
Y_true_errors = Y_true[errors]
X_val_errors = X_val[errors] def display_errors(errors_index,img_errors,pred_errors, obs_errors):
""" This function shows 6 images with their predicted and real labels"""
n = 0
nrows = 2
ncols = 3
fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True)
for row in range(nrows):
for col in range(ncols):
error = errors_index[n]
ax[row,col].imshow((img_errors[error]).reshape((28,28)))
ax[row,col].set_title("Predicted label :{}\nTrue label :{}".format(pred_errors[error],obs_errors[error]))
n += 1 # Probabilities of the wrong predicted numbers
Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1) # Predicted probabilities of the true values in the error set
true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1)) # Difference between the probability of the predicted label and the true label
delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors # Sorted list of the delta prob errors
sorted_dela_errors = np.argsort(delta_pred_true_errors) # Top 6 errors
most_important_errors = sorted_dela_errors[-6:] # Show the top 6 errors
display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors)

# predict results
results = model.predict(test) # select the indix with the maximum probability
results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)

submission.to_csv("cnn_mnist_datagen.csv",index=False)

吴裕雄--天生自然 python数据分析:基于Keras使用CNN神经网络处理手写数据集的更多相关文章

  1. 吴裕雄--天生自然 PYTHON数据分析:基于Keras的CNN分析太空深处寻找系外行星数据

    #We import libraries for linear algebra, graphs, and evaluation of results import numpy as np import ...

  2. 吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  3. 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  4. 吴裕雄--天生自然 python数据分析:健康指标聚集分析(健康分析)

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  5. 吴裕雄--天生自然 python数据分析:葡萄酒分析

    # import pandas import pandas as pd # creating a DataFrame pd.DataFrame({'Yes': [50, 31], 'No': [101 ...

  6. 吴裕雄--天生自然 PYTHON数据分析:人类发展报告——HDI, GDI,健康,全球人口数据数据分析

    import pandas as pd # Data analysis import numpy as np #Data analysis import seaborn as sns # Data v ...

  7. 吴裕雄--天生自然 python数据分析:医疗费数据分析

    import numpy as np import pandas as pd import os import matplotlib.pyplot as pl import seaborn as sn ...

  8. 吴裕雄--天生自然 PYTHON数据分析:钦奈水资源管理分析

    df = pd.read_csv("F:\\kaggleDataSet\\chennai-water\\chennai_reservoir_levels.csv") df[&quo ...

  9. 吴裕雄--天生自然 PYTHON数据分析:医疗数据分析

    import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.rea ...

随机推荐

  1. UML-类图-如何画引用类和集合?

    1.画引用类 引用到了类时,需要画关联线,否则其他基本类型(int.string.date等)不画. 2.画集合 当然,方法1中可加入箭头.对应java代码: public class Sale { ...

  2. Tkinter控件Canvas

    网上关于tkinter的canvas组件系统的中文教程很少,英文教程未知.要么是专业的参考文档,没有丰富的实例,要么在不同的论坛,博客平台零零散散存在一些canvas的例子,这给学习canvas带来了 ...

  3. Linux学习(二) --- 常用命令

    [TOC] 一.常用命令 1.目录 cd切换 cd 路径 切换到指定路径 cd .. 上一级 mkdir:创建目录 mkdir 目录名 pwd:查看 2.查看 ll命令:查询目录内容 ll 查看当前( ...

  4. HOG特征原理及代码实现

    HOG特征原理 HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子. 它通过计算和统计 ...

  5. vncserver

    ## install packages yum install tigervnc-server xhost ## start vnc and xhost vncserver export DISPLA ...

  6. 第04项目:淘淘商城(SpringMVC+Spring+Mybatis) 的学习实践总结【第四天】

    https://pan.baidu.com/s/1bptYGAb#list/path=%2F&parentPath=%2Fsharelink389619878-229862621083040 ...

  7. ubuntu16.04更换 apt-get 阿里源

    deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties deb ht ...

  8. 基于邻接表的长度为k的简单路径的求解

    描述 一个连通图采用邻接表作为存储结构.设计一个算法,判断无向图中任意给定的两点是否存在一条长度为k的简单路径. 输入 多组数据,每组m+3数据行.第一行有两个数字n,m和k,代表有n个顶点,m条边和 ...

  9. oracle_(第三课)网络服务配置

    1.打开Net Manager 2.开始配置 3.检测 4.SQL Developer 检测 新创数据库连接,连接类型选择  TNS ,若在网络别名中能看到MYORCL,则证明你成功了

  10. html5 一些好用的原生事件

    计算机技术发展这么多年, 有些方面太老了,不适合新时代的发展, 使用新的规范,更方便开发和使用, 提高各方使用人的工作效率, 何乐而不为 drag drop html5新增属性 某些操作使用拖拽比较方 ...