传送门

Luogu

解题思路

区间最大子段和板子题。

考虑用线段树来做。

对于一个线段树节点所包含区间,它的最大子段和有两种情况,包含中点与不包含。

不包含的情况直接从左右子树转移。

对于包含的情况:

我们对每个节点维护两个值:开头是左端点的最大子段和,结尾是右端点的最大子段和。

那么包含中点的情况可以用上面两个东西转移。

那么这两个东西又怎么维护呢。。。

他们也有包含与不包含中点的情况,只要记一下节点的区间和就可以了,具体方法同上。

于是便搞定了这道题。

细节注意事项

  • 咕咕咕

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= (c == '-'), c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} const int _ = 50010; int n, q, a[_];
struct node { int sum, L, R, mx; }t[_ << 2]; inline int lc(int rt) { return rt << 1; } inline int rc(int rt) { return rt << 1 | 1; } inline void pushup(int rt) {
t[rt].sum = t[lc(rt)].sum + t[rc(rt)].sum;
t[rt].L = max(t[lc(rt)].L, t[lc(rt)].sum + t[rc(rt)].L);
t[rt].R = max(t[rc(rt)].R, t[rc(rt)].sum + t[lc(rt)].R);
t[rt].mx = max(t[lc(rt)].R + t[rc(rt)].L, max(t[lc(rt)].mx, t[rc(rt)].mx));
} inline void build(int rt = 1, int l = 1, int r = n) {
if (l == r) { t[rt] = (node) { a[l], a[l], a[l], a[l] }; return; }
int mid = (l + r) >> 1;
build(lc(rt), l, mid), build(rc(rt), mid + 1, r), pushup(rt);
} inline void update(int id, int v, int rt = 1, int l = 1, int r = n) {
if (l == r) { t[rt] = (node) { v, v, v, v }; return; }
int mid = (l + r) >> 1;
if (id <= mid) update(id, v, lc(rt), l, mid);
else update(id, v, rc(rt), mid + 1, r);
pushup(rt);
} inline node query(int ql, int qr, int rt = 1, int l = 1, int r = n) {
if (ql <= l && r <= qr) return t[rt];
int mid = (l + r) >> 1;
if (qr <= mid) return query(ql, qr, lc(rt), l, mid);
if (ql > mid) return query(ql, qr, rc(rt), mid + 1, r);
node ls = query(ql, mid, lc(rt), l, mid);
node rs = query(mid + 1, qr, rc(rt), mid + 1, r);
node res = { 0, 0, 0, 0 };
res.sum = ls.sum + rs.sum;
res.L = max(ls.L, ls.sum + rs.L);
res.R = max(rs.R, rs.sum + ls.R);
res.mx = max(ls.R + rs.L, max(ls.mx, rs.mx));
return res;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
read(n);
for (rg int i = 1; i <= n; ++i) read(a[i]);
build();
read(q);
for (int f, x, y; q--; ) {
read(f), read(x), read(y);
if (!f) update(x, y);
else printf("%d\n", query(x, y).mx);
}
return 0;
}

完结撒花 \(qwq\)

「SP1716」GSS3 - Can you answer these queries III的更多相关文章

  1. 【SP1716】GSS3 - Can you answer these queries III(动态DP)

    题目链接 之前用线段树写了一遍,现在用\(ddp\)再写一遍. #include <cstdio> #define lc (now << 1) #define rc (now ...

  2. 题解 SP1716 【GSS3 - Can you answer these queries III】

    \[ Preface \] 没有 Preface. \[ Description \] 维护一个长度为 \(n\) 的数列 \(A\) ,需要支持以下操作: 0 x y 将 \(A_x\) 改为 \( ...

  3. 题解【SP1716】GSS3 - Can you answer these queries III

    题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...

  4. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  5. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  6. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  7. SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)

    题意翻译 nnn 个数, qqq 次操作 操作0 x y把 AxA_xAx​ 修改为 yyy 操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和 题目描述 You are give ...

  8. SP1716 GSS3 - Can you answer these queries III 线段树

    问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...

  9. SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树

    GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...

随机推荐

  1. 为什么阿里Java手册推荐慎用 Object 的 clone 方法来拷贝对象

    图片若无法显示,可至掘金查看https://juejin.im/post/5d425230f265da039519d248 前言 在阿里Java开发手册中,有这么一条建议:慎用 Object 的 cl ...

  2. WinForm开发(6)——C#/winform程序打包部署时,如何把SQL数据库一起打包进去

    打包数据库到安装程序中 方法1. 备份/恢复先备份数据库:backup database 数据库 to disk='c:\备份.bak' 将备份文件打包到安装程序中. 在第一次运行程序的时候,进行数据 ...

  3. 模块学习-shutil

    高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length]) 将文件内容拷贝到另一个文件中,可以部分内容 shutil.copyfile(s ...

  4. PTA的Python练习题(十二)-第4章-6 输出前 n 个Fibonacci数

    接下来应该做到 第4章-6 输出前 n 个Fibonacci数 了 def fib(n): a,b = 0,1 for i in range(n+1): a,b = b,a+b return a n= ...

  5. ubuntu---查看、安装、切换内核

    首先可以查看一下内核列表:sudo dpkg --get-selections | grep linux-image     查看Linux中安装了哪些内核: dpkg --get-selection ...

  6. adblock广告过滤

    1.在 img的 src中 出现 ad连在一起的情况,会被adblock过滤掉. 例如 <img id="adasdd" class="ad_mina" ...

  7. [ DLPytorch ] 注意力机制&机器翻译

    MachineTranslation 实现过程 rstrip():删除 string 字符串末尾的指定字符(默认为空格). 语法:str.rstrip([chars]) 参数:chars -- 指定删 ...

  8. 前端学习 之 CSS(一)

    一:什么是 CSS? ·CSS 指层叠样式表 (Cascading Style Sheets) ·样式定义如何显示 HTML 元素 ·样式通常存储在样式表中 ·把样式添加到 HTML 4.0 中,是为 ...

  9. 工具 - gravatar保存头像

    流程 注册账号,上传头像 https://secure.gravatar.com/avatar/ 就可以获取到头像 参数 例子flasky git reset --hard 10c def grava ...

  10. 【代码总结】GD库中图片缩印

    bool imagecopyresampled ( resource $dst_image, resource $src_image, int $dst_x, int $dst_y, int $src ...