HDU 2157 How many ways?【矩阵快速幂】
题目
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦
输入格式
输入数据有多组, 每组的第一行是2个整数 n,m(0<n<=20,m<=100) 表示校园内共有n个点, 为了方便起见, 点从0到n−1编号,接着有m行, 每行有两个整数 s,t(0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100), 接下来的T行, 每行有三个整数 A,B,k, 表示问你从A点到B点恰好经过k个点的方案数 (k<20), 可以走重复边。如果不存在这样的走法, 则输出0
当n, m都为0的时候输入结束
输出格式
计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果
输入样例
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
输出格式
2
0
1
3
分析
把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=AA,那么C(i,j)=ΣA(i,k)A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,如果要求经过k步的路径数,我们只需要二分求出A^k即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
const int Inf = 0x3f3f3f3f;
using namespace std; const int maxn=+;
const int mod=;
int s[maxn][maxn],sum[maxn][maxn],array[maxn][maxn];
int n,m; void MatrixMult(int a[maxn][maxn],int b[maxn][maxn]){
int c[maxn][maxn]={};
for(int i=;i<n;++i){
for(int j=;j<n;++j){
for(int k=;k<n;++k){
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%mod;
}
}
}
for(int i=;i<n;++i){
for(int j=;j<n;++j)a[i][j]=c[i][j];
}
} int Matrix(int a,int b,int k){
for(int i=;i<n;++i){
for(int j=;j<n;++j){
if(i == j)sum[i][j]=;
else sum[i][j]=;
}
}
for(int i=;i<n;++i){
for(int j=;j<n;++j)array[i][j]=s[i][j];
}
while(k){
if(k&)MatrixMult(sum,array);
MatrixMult(array,array);
k>>=;
}
return sum[a][b];
} int main(){
int a,b,t,k;
while(cin>>n>>m,n+m){
memset(s,,sizeof s);
for(int i=;i<m;++i){
scanf("%d%d",&a,&b);
s[a][b]=;
}
cin>>t;
while(t--){
scanf("%d%d%d",&a,&b,&k);
printf("%d\n",Matrix(a,b,k));
}
}
return ;
}
HDU 2157 How many ways?【矩阵快速幂】的更多相关文章
- HDU 2157 How many ways?? (邻接矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=2157 题意 : 给定一个有向图,问从A点恰好走k步(允许重复经过边)到达B点的方案数mod p的值 从这道题 ...
- hdu 2157 How many ways_ 矩阵快速幂
题意:略 直接矩阵乘法就行了 #include <iostream> #include<cstdio> #include<cstring> using namesp ...
- hdu 5667 BestCoder Round #80 矩阵快速幂
Sequence Accepts: 59 Submissions: 650 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536 ...
- hdu 4686 Arc of Dream(矩阵快速幂)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...
- HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...
- HDU - 4990 Reading comprehension 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...
- HDU 1005 Number Sequence:矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...
- HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...
- hdu 1575 Tr A(矩阵快速幂)
今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...
- hdu 4565 So Easy!(矩阵+快速幂)
题目大意:就是给出a,b,n,m:让你求s(n); 解题思路:因为n很可能很大,所以一步一步的乘肯定会超时,我建议看代码之前,先看一下快速幂和矩阵快速幂,这样看起来就比较容易,这里我直接贴别人的推导, ...
随机推荐
- ssh-copy-id to filter out any that...ERROR: Read from socket failed: Connection reset by peer
ssh-copy-id bigboss1 /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter ...
- F5忘记密码修改教程
!!!首先查看系统版本,13版本和14版本修改密码方式不一致 首先介绍13版本修改密码 注:12版本也适用,11版本未测试,应该也可以,有问题欢迎留言) 1. 将终端连接到BIG-IP串行控制台端口. ...
- Java实现 LeetCode 13 罗马数字转整数
13. 罗马数字转整数 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 ...
- Java实现蓝桥杯有歧义的号码
描述 小Hi参加了一场大型马拉松运动会,他突然发现面前有一位参赛者背后的号码竟然和自己一样,也是666.仔细一看,原来那位参赛者把自己号码帖反(旋转180度)了,结果号码999看上去变成了号码666. ...
- Spring之JdbcTemplate使用
一:JdbcTemplate概述及入门 “Don‘t Reinvent the Wheel” , 这是一句很经典的话,出自Spring官方,翻译过来就是说 “不要重复发明轮子” .由此我们可以猜测,J ...
- vue-cli3.0配置详解
这次给大家带来vue-cli3.0配置详解,使用vue-cli3.0配置的注意事项有哪些,下面就是实战案例,一起来看一下. 新建项目 1 2 3 4 5 6 7 8 # 安装 npm install ...
- 基于 abp vNext 和 .NET Core 开发博客项目 - 博客接口实战篇(三)
系列文章 基于 abp vNext 和 .NET Core 开发博客项目 - 使用 abp cli 搭建项目 基于 abp vNext 和 .NET Core 开发博客项目 - 给项目瘦身,让它跑起来 ...
- 07.Django-缓存
目录 缓存 一.如何提高网站并发量? 二.缓存方式 1. 开发调式缓存 2. 内存缓存 3. 文件缓存 4. 数据库缓存 5. Memcache缓存 5.1 使用python-memcached模块 ...
- 【网页设计】第四周 JavaSript
第四周 JSP 一 JSP概述 含义: Java Server Pages, 广泛使用的服务器端脚本语言之一:(运行在服务器端 BS结构) 由服务器端的JSP引擎执行JSP代码,然后将结果以HT ...
- PMBOK 基础知识(1)
启动.结束过程 项目管理计划 第一章 引论 第2章项目运行环境 第3章 项目经理的角色 第4章 项目整合管理 第5章 项目范围管理 第6章 项目进度管理 第7章 项目成本管理 第8章 项目质量管理 ...