caffe训练数据流程
cifar10训练实例
1. 下载数据
# sudo sh data/cifar10/get_cifar10.sh
2. 转换数据格式为lmdb
# sudo sh examples/cifar10/create_cifar10.sh
转换成功后,会在 examples/cifar10/文件夹下生成两个文件夹,cifar10_train_lmdb和cifar10_test_lmdb, 里面的文件就是我们需要的文件。
3. 配置solver.prototxt文件
为了节省时间,我们进行快速训练(train_quick),训练分为两个阶段,第一个阶段(迭代4000次)调用配置文件cifar10_quick_solver.prototxt, 学习率(base_lr)为0.001
第二阶段(迭代1000次)调用配置文件cifar10_quick_solver_lr1.prototxt, 学习率(base_lr)为0.0001(越是训练到最后,就需要更高的精度,loss才能趋近稳定)
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
lr_policy: "multistep"
gamma: 0.1
stepvalue: 4000
stepvalue: 5000
原文将两个过程配置文件合并到一起。
最后在当前目录下生成model文件,之后我们就可以用model文件来测试数据了。
原文使用cadu+cudnn加速,运行时间45秒,我用cpu运行了一个小时。5w张图片,1小时,差了80倍的速度。想想都可怕,由此可见GPU 加速的必要性。
caffe训练数据流程的更多相关文章
- python+caffe训练自己的图片数据流程
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...
- 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...
- caffe 中如何打乱训练数据
第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不 ...
- 使用caffe训练自己的CNN
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等 ...
- caffe训练自己的图片进行分类预测--windows平台
caffe训练自己的图片进行分类预测 标签: caffe预测 2017-03-08 21:17 273人阅读 评论(0) 收藏 举报 分类: caffe之旅(4) 版权声明:本文为博主原创文章,未 ...
- caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- 如何用Caffe训练自己的网络-探索与试验
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblo ...
随机推荐
- jchdl - 门和开关层(GSL)
https://mp.weixin.qq.com/s/dcBfMLOuaFtrk6i149vIVQ 第一部分 静态建模:拓扑模型 GSL层拓扑建模相对简单,由线和节点组成: 线连接各个节点: ...
- Entity FrameWork操作数据库完成登陆、列表显示+验证码
登陆页面 登陆页面的页面结构比较简单,没有写样式. image标签的作用是用来显示验证码. 一般处理程序代码展示 using System; using System.Collections.Gene ...
- Java实现 LeetCode 719 找出第 k 小的距离对(二分搜索法+二分猜数字)
719. 找出第 k 小的距离对 给定一个整数数组,返回所有数对之间的第 k 个最小距离.一对 (A, B) 的距离被定义为 A 和 B 之间的绝对差值. 示例 1: 输入: nums = [1,3, ...
- CSDN怎么跳转到指定的位置
位置1 只需要给上面的链接和下面的id一致即可 位置1
- Java实现 LeetCode 275 H指数 II
275. H指数 II 给定一位研究者论文被引用次数的数组(被引用次数是非负整数),数组已经按照升序排列.编写一个方法,计算出研究者的 h 指数. h 指数的定义: "h 代表"高 ...
- Java实现蓝桥杯 算法训练 大等于n的最小完全平方数
试题 算法训练 大等于n的最小完全平方数 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 输出大等于n的最小的完全平方数. 若一个数能表示成某个自然数的平方的形式,则称这个数为完全平 ...
- Java实现字符串匹配
1 问题描述 给定一个n个字符组成的串(称为文本),一个m(m <= n)的串(称为模式),从文本中寻找匹配模式的子串. 2 解决方案 2.1 蛮力法 package com.liuzhen.c ...
- java实现输入日期
/* 从键盘输入一个日期,格式为 yyyy-M-d 要求计算该日期与 1949 年 10 月 1 日距离多少天 例如: 用户输入了:1949-10-2 程序输出:1 用户输入了:1949-11-1 程 ...
- Jmeter之Json提取器详解(史上最全)
参考资料:https://www.bbsmax.com/A/D854lmBw5E/ Jsonpath在线测试:http://jsonpath.com/ 实际工作中用到的一些场景: 提取某个特定的值 提 ...
- 曹工说JDK源码(1)--ConcurrentHashMap,扩容前大家同在一个哈希桶,为啥扩容后,你去新数组的高位,我只能去低位?
如何计算,一对key/value应该放在哪个哈希桶 大家都知道,hashmap底层是数组+链表(不讨论红黑树的情况),其中,这个数组,我们一般叫做哈希桶,大家如果去看jdk的源码,会发现里面有一些变量 ...