题意:有一个n*m的矩形,一辆车从左上角出发,沿一条路径走,路径是由矩形上每个单元格的边构成的,最后回到左上角,求车子在每个格子转过圈数的平方和。

思路:假设需要记录每个格子转的顺时针的圈数(为负表示转的逆时针),可以考虑车子每次移动对各个格子的贡献:

  • 车子左移,路径上方所有格子转的圈数+1,路径下方所有格子-1,而上方和下方所有格子都形成大的矩形,于是相当于每次对矩形区域的格子全部执行加减操作。
  • 车子右移,上方-1,下方+1。
  • 车子上移,左边-1,右边+1。
  • 车子下移,左边+1,右边-1。

对于询问,就是求每个点最终的值。这就是一个“区间修改,单点求值”的问题,用二维树状数组即可解决。

  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#pragma comment(linker, "/STACK:10240000")
#include <bits/stdc++.h>
using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii; #ifndef ONLINE_JUDGE
namespace Debug {
void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
#endif // ONLINE_JUDGE
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
/* -------------------------------------------------------------------------------- */ struct TA {
vector<vector<int> > r;
int n, m;
void resize(int n, int m) {
this->n = n;
this->m = m;
r.resize(n + );
for (int i = ; i <= n; i ++) {
r[i].clear();
r[i].resize(m + );
}
}
inline int lowbit(const int &x) {
return x & -x;
}
void update(int px, int py, int v) {
int buf = py;
while (px <= n) {
py = buf;
while (py <= m) {
r[px][py] += v;
py += lowbit(py);
}
px += lowbit(px);
}
}
void update(int px1, int py1, int px2, int py2, int v) {
update(px1, py1, v);
update(px1, py2 + , -v);
update(px2 + , py1, -v);
update(px2 + , py2 + , v);
}
int query(int px, int py) {
int ans = , buf = py;
while (px) {
py = buf;
while (py) {
ans += r[px][py];
py -= lowbit(py);
}
px -= lowbit(px);
}
return ans;
}
};
TA ta; ll sqr(int x) {
return (ll)x * x;
} const int dx[] = {, , , -};
const int dy[] = {, -, , }; int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int T, cas = , n, m, k, s, x, y, xx, yy, d0, f[];
char d[];
f['R'] = ;
f['L'] = ;
f['D'] = ;
f['U'] = ;
cin >> T;
while (T --) {
cin >> n >> m >> k;
n ++;
m ++;
ta.resize(n, m);
x = y = ;
while (k --) {
scanf("%s%d", &d, &s);
d0 = f[d[]];
xx = x + dx[d0] * s;
yy = y + dy[d0] * s;
if (d[] == 'L') {
ta.update(, yy, x - , y - , );
ta.update(x, yy, n - , y - , -);
}
if (d[] == 'R') {
ta.update(, y, x - , yy - , -);
ta.update(x, y, n - , yy - , );
}
if (d[] == 'U') {
ta.update(xx, , x - , y - , -);
ta.update(xx, y, x - , m - , );
}
if (d[] == 'D') {
ta.update(x, , xx - , y - , );
ta.update(x, y, xx - , m - , -);
}
x = xx;
y = yy;
}
ll ans = ;
for (int i = ; i < n; i ++) {
for (int j = ; j < m; j ++) {
ans += sqr(ta.query(i, j) / );
}
}
cout << "Case #" << ++ cas << ": " << ans << endl;
}
return ;
}

[LA7139 Rotation(2014 shanghai onsite)]二维树状数组的更多相关文章

  1. POJ 2155 Matrix (二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17224   Accepted: 6460 Descripti ...

  2. 二维树状数组 BZOJ 1452 [JSOI2009]Count

    题目链接 裸二维树状数组 #include <bits/stdc++.h> const int N = 305; struct BIT_2D { int c[105][N][N], n, ...

  3. HDU1559 最大子矩阵 (二维树状数组)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1559 最大子矩阵 Time Limit: 30000/10000 MS (Java/Others)  ...

  4. POJMatrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22058   Accepted: 8219 Descripti ...

  5. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  6. Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*

    D. Iahub and Xors   Iahub does not like background stories, so he'll tell you exactly what this prob ...

  7. POJ 2155 Matrix(二维树状数组+区间更新单点求和)

    题意:给你一个n*n的全0矩阵,每次有两个操作: C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反 Q x y:求出(x,y)位置的值 树状数组标准是求单点更新区间求和,但 ...

  8. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  9. [POJ2155]Matrix(二维树状数组)

    题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...

随机推荐

  1. D. Feeding Chicken(构造)

    题目大意:将k个鸡放到一个n*m的矩阵中,要求每个鸡所占的rice的个数只差最小 题解:构造,设一共有cnt个rice,可以分cnt/k个,即每一只鸡要么占用cnt/k个rice,要么占cnt/k+1 ...

  2. vue项目中使用bpmn-节点篇

    前情提要 根据之前的操作,我们可以创建.导入.导出流程图,并对其进预览.通过此篇可以学到: 为节点添加点击.鼠标悬浮等事件 获取流程图内所有指定类型的节点 通过外部更新节点名字 获取节点实例的两种方法 ...

  3. [书籍精读]《React Native精解与实战》精读笔记分享

    写在前面 书籍介绍:本书由架构师撰写,包含ReactNative框架底层原理,以及与iOS.Android混合开发案例,精选了大量实例代码,方便读者快速学习.主要内容分为两大部分,第1部分" ...

  4. 14.移动端图片浏览组件 react-wx-images-viewer

    安装 npm install --save react-wx-images-viewer 使用 import WxImageViewer from 'react-wx-images-viewer'; ...

  5. 3. string

    let str = "my string"; 1. str.startsWith('my'); //true2.str.endsWith('my'); //false3.str.i ...

  6. jmeter 聚合报告参数解释

    label:每个请求的名称 样本:发送给服务器的请求数量 平均值:平均响应时间,默认情况下是单个 Request 的平均响应时间,当使用了 Transaction Controller 时,也可以以T ...

  7. kubernetes的Service是什么?

    service到底是什么? k8s的service定义了一个服务的访问入口地址,前端的应用通过这个入口地址访问其背后的一组由pod副本组成的集群实例.来自外部的访问请求被负载均衡到后端的各个容器应用上 ...

  8. Ipython入门小教程

    学习<利用python进行数据分析>第三章 IPython:一种交互式计算和开发环境的笔记,共享给大家,同时为自己作为备忘用. 安装ipython用pip即可.ps.博主用的是win7系统 ...

  9. Java中Character类

    Character 类在对象中包装一个基本类型char的值此外,该类提供了几种方法,以确定字符的类别(小写字母,数字,等),并将字符从大写转小写,反之亦然. 构造方法: Character(char ...

  10. Java类的使用

    在一个Java文件中写两个类:一个基本的类,一个测试类.注意:文件名称和测试类名称一致. 如何使用呢?创建对象使用.如何创建对象呢?格式:类名 对象名 = new 类名(); Student s = ...