【SPOJ – REPEATS】 后缀数组【连续重复子串】
字体颜色如何
字体颜色
SPOJ - REPEATS
题意
给出一个字符串,求重复次数最多的连续重复子串。
题解
引自论文-后缀数组——处理字符串的有力工具。
“S肯定包括了字符r[0], r[L], r[L * 2],r[L * 3], ……中的某相邻的两个”
由于当前S是有两个长度为L的连续重复子串拼接而成的,那意味着S[i]和S[i+L] ( 0≤i<L )必定是一样的字符
而这两个字符位置相差L
而字符r[0],r[L],r[L * 2],r[L * 3],......中相邻两个的位置差均为L
所以只须看字符r[L* i]和r[L* (i+1)]往前和
往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1次。
这句就是枚举\(r[l * i]\),\(r[l * (i+1)]\),分别作为重复子串第一二个重复的串中的字符时,重复子串的重复次数可以是多少。
结合上面图中的数组更容易理解.
如果此时r[i * L]是第一个重复子串的首字符,这样直接用公共前缀[lcp(i * L ,L* (i+1))]k除以L并向下取整+1就可以得到最后结果。但如果r[i * L]如果不是首字符,这样算完之后结果就有可能偏小,因为r[i * L]前面可能还有少许字符也能看作是第一个重复子串里的。
于是,我们不妨先算一下,从r[i * L]开始,除匹配了k/L个重复子串,还剩余了几个字符,剩余的自然是k%L个字符。如果说r[i * L]的前面还有L-k%L个字符完成匹配的话,这样就相当于利用多余的字符还可以再匹配出一个重复子串,于是我们只要检查一下从r[i * L-(L-k%L)]和r[L * (i+1)-(L-k%L)]开始是否有L-k%L个字符能够完成匹配即可,也就是说去检查这两个后缀的最长公共前缀是否比L-k%L大即可。
当然如果公共前缀不比L-k%L小,自然就不比L小,因为后面的字符都是已经匹配上的,所以为了方便编写,程序里面就直接去看是否会比L小就可以了。
代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define pb push_back
#define bitnum(a) __builtin_popcount(a)
//返回a中有多少个1,注意是32为无符号整数
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
const int N = 1e6+10;
int sa[N],cnt[N],pos[N],rk[N],oldrk[N],ht[N],n,m;
char str[N],s[2];
bool cmp(int a,int b,int k)
{
return oldrk[a]==oldrk[b]&&oldrk[a+k]==oldrk[b+k];
}
void getsa()
{
memset(cnt,0,sizeof(cnt));
m=122;
for(int i=1;i<=n;i++) ++cnt[rk[i]=str[i]];
for(int i=1;i<=m;i++) cnt[i]+=cnt[i-1];
for(int i=n;i;i--) sa[cnt[rk[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int num=0;
for(int i=n-k+1;i<=n;i++) pos[++num]=i;
for(int i=1;i<=n;i++) if(sa[i]>k) pos[++num]=sa[i]-k;
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=n;i++) ++cnt[rk[i]];
for(int i=1;i<=m;i++) cnt[i]+=cnt[i-1];
for(int i=n;i;i--) sa[cnt[rk[pos[i]]]--]=pos[i];
num=0;
memcpy(oldrk,rk,sizeof(rk));
for(int i=1;i<=n;i++) rk[sa[i]]=cmp(sa[i],sa[i-1],k)?num:++num;
if(num==n) break;
m=num;
}
for(int i=1;i<=n;i++) rk[sa[i]]=i;
int k=0;
for(int i=1;i<=n;i++)
{
if(k) --k;
while(str[i+k]==str[sa[rk[i]-1]+k]) ++k;
ht[rk[i]]=k;
}
}
int dp[N][20];
void RMQ()
{
for(int i=1;i<=n;i++) dp[i][0]=ht[i];
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
int query(int l,int r)
{
int k=0;
while((1<<(k+1))<=(r-l+1)) ++k;
return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int lcp(int i,int j)
{
i=rk[i],j=rk[j];
if(i>j) swap(i,j);
return query(i+1,j);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%s",s);
str[i]=s[0];
}
getsa();
RMQ();
int ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j+i<=n;j+=i)
{
int now=lcp(j,j+i);
int num=now/i+1;
int k=j-(i-now%i);
if(k>0&&lcp(k,k+i)>=i) num++;
ans=max(ans,num);
}
}
printf("%d\n",ans);
}
return 0;
}
【SPOJ – REPEATS】 后缀数组【连续重复子串】的更多相关文章
- 【Poj-3693】Maximum repetition substring 后缀数组 连续重复子串
POJ - 3693 题意 SPOJ - REPEATS的进阶版,在这题的基础上输出字典序最小的重复字串. 思路 跟上题一样,先求出最长的重复次数,在求的过程中顺便纪录最多次数可能的长度. 因为sa数 ...
- SPOJ - REPEATS —— 后缀数组 重复次数最多的连续重复子串
题目链接:https://vjudge.net/problem/SPOJ-REPEATS REPEATS - Repeats no tags A string s is called an (k,l ...
- SPOJ REPEATS 后缀数组
题目链接:http://www.spoj.com/problems/REPEATS/en/ 题意:首先定义了一个字符串的重复度.即一个字符串由一个子串重复k次构成.那么最大的k即是该字符串的重复度.现 ...
- [spoj DISUBSTR]后缀数组统计不同子串个数
题目链接:https://vjudge.net/contest/70655#problem/C 后缀数组的又一神奇应用.不同子串的个数,实际上就是所有后缀的不同前缀的个数. 考虑所有的后缀按照rank ...
- POJ - 2406 ~SPOJ - REPEATS~POJ - 3693 后缀数组求解重复字串问题
POJ - 2406 题意: 给出一个字符串,要把它写成(x)n的形式,问n的最大值. 这题是求整个串的重复次数,不是重复最多次数的字串 这题很容易想到用KMP求最小循环节就没了,但是后缀数组也能写 ...
- SPOJ REPEATS Repeats (后缀数组 + RMQ:子串的最大循环节)题解
题意: 给定一个串\(s\),\(s\)必有一个最大循环节的连续子串\(ss\),问最大循环次数是多少 思路: 我们可以知道,如果一个长度为\(L\)的子串连续出现了两次及以上,那么必然会存在\(s[ ...
- POJ-3693-Maximum repetition substring(后缀数组-重复次数最多的连续重复子串)
题意: 给出一个串,求重复次数最多的连续重复子串 分析: 比较容易理解的部分就是枚举长度为L,然后看长度为L的字符串最多连续出现几次. 既然长度为L的串重复出现,那么str[0],str[l],str ...
- poj 3693 后缀数组 重复次数最多的连续重复子串
Maximum repetition substring Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8669 Acc ...
- POJ3693 Maximum repetition substring —— 后缀数组 重复次数最多的连续重复子串
题目链接:https://vjudge.net/problem/POJ-3693 Maximum repetition substring Time Limit: 1000MS Memory Li ...
随机推荐
- stand up meeting 12/8/2015
part 组员 今日工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 -------------- -- ----------- -- PDF Reader 朱玉影 ...
- 报错:require_once cannot allocate memory----php,以前自己弄的稍微有点特殊的开发环境
最近出现过一个问题,值得记录 类似于这样的报错的问题: Warning: require_once(/www/app/somecomponent.php): failed to open stream ...
- input type file onchange上传文件的过程中,同一个文件二次上传无效的问题。
不要采用删除当前input[type=file]这个节点,然后再重新创建dom这种方案,这样是不合理的.解释如下:input[type=file]使用的是onchange去做,onchange监听的为 ...
- Android Resourse
为什么80%的码农都做不了架构师?>>> 使用情景: 实现帧动画步骤的控制,这样动态的获取Drawable资源对应的R id,播放到那一步就加载到哪一步 private void ...
- 团队中的 Node.js 具体实践
前天,我们公司前端团队的几个人一起去大搜车参加了芋头所组织的「搜车 Node Party」.这是我第一次参加与 Node.js 相关的线下聚会,如果不算「杭JS」的话. 聚会现场 这次聚会的主题全部是 ...
- 人工智能与VR结合:带来体验多样性
人工智能服务--微软认知服务(Microsoft Cognitive Services)最初包括视觉.语音.语言.知识和搜索五大类共 21 项 API.应用了这些 API 的系统能看.能听.能说话,并 ...
- 监控之--Nagios如何监控本地主机及本地服务
上一节内容介绍了Nagios监控服务在linux环境下的安装过程,本节内容将详细介绍如何使用已经安装的Nagios服务的一些配置文件的使用以及如何监控本地相关服务,如要完成对一台主机的监控Nagios ...
- 8种MySQL分页方法总结
这篇文章主要介绍了8种MySQL分页方法总结,小编现在才知道,MySQL分页竟然有8种实现方法,本文就一一讲解了这些方法,需要的朋友可以参考下 MySQL的分页似乎一直是个问题,有什么优化方法吗?网上 ...
- nodejs操作MySQL,mysql连接池及事务的使用
https://blog.csdn.net/jasnet_u/article/details/88605168
- 图论--割点--Tarjan
#include<iostream> #include<stdio.h> #include<vector> using namespace std; const i ...