http://acm.hdu.edu.cn/showproblem.php?pid=5348

题意:给一个无向图,现在要将其变成有向图,使得每一个顶点的|出度-入度|<=1

思路:分为两步,(1)从图上找环,将环上边的方向设为一致,这样直到图中不存在环,最后剩下一个森林(2)对每一棵树的边进行编号,方法是从根节点向下,对每个点,将其与第一个儿子之间的边设置为与父亲之间的边“互补”的方向,而与儿子之间边的方向则交替分配,显然无论儿子多少个,这个点的出度与入度之差不会超过1。这样两步完成后,所有边都有了方向,所以对任意图都是有解的。自环和重边不需要特殊对待。

无向图上找环: 由于是无向图上任意找环,所以存在这样的性质:如果此时此刻从当前边出发找不到环,那么以后再访问这条边时,也同样找不到环,也就是说如果这条边在某个环上,那么现在就可以找到,所以对同一条边访问一次即可。注意代码里面遍历边时,用一个数组表示这个点边集合的入口,一边遍历一边改变入口,这样下次到这个点时,就跳过了以前访问过的从这个点出发的边。

至于删环,用数组标记下即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
 
using namespace std;
 
#define X                   first
#define Y                   second
#define pb                  push_back
#define mp                  make_pair
#define all(a)              (a).begin(), (a).end()
#define fillchar(a, x)      memset(a, x, sizeof(a))
 
typedef long long ll;
typedef pair<intint> pii;
typedef unsigned long long ull;
 
#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
template<typename T>
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}
template<typename T>
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}
 
const double PI = acos(-1.0);
const int INF = 1e9 + 7;
 
/* -------------------------------------------------------------------------------- */
 
const int maxn = 1e5 + 7;
 
 
pii E[maxn * 6];
int SZ;
int Next[maxn * 6];
int last[maxn];
 
int n;
bool ans[maxn * 6], markE[maxn * 6], dif[maxn], flag[maxn], vis[maxn];
int mark[maxn];
 
void add(int u, int v) {
    E[SZ ++] = mp(u, v);
    E[SZ ++] = mp(v, u);
    Next[SZ - 2] = last[u];
    last[u] = SZ - 2;
    Next[SZ - 1] = last[v];
    last[v] = SZ - 1;
}
stack<int> S;
bool now = 0;
void DeleteRing(int u) {
    if (flag[u]) {
        while (S.top() != u) {
            flag[S.top()] = false;
            S.pop();
        }
        now = true;
        return ;
    }
    S.push(u);
    flag[u] = true;
    for (int &i = mark[u]; ~i; i = Next[i]) {
        int id = i;
        pii &e = E[id];
        if (!vis[e.Y] && !markE[id]) {
            markE[id] = true;
            markE[id ^ 1] = true;
            ans[id] = true;
            DeleteRing(e.Y);
            if (S.top() != u) return ;
            if (now) {
                now = false;
                continue;
            }
            markE[id] = false;
            markE[id ^ 1] = false;
            ans[id] = false;
        }
    }
    S.pop();
    flag[u] = false;
    vis[u] = true;
}
 
void dfs(int u) {
    vis[u] = true;
    for (int i = last[u]; ~i; i = Next[i]) {
        int id = i;
        pii &e = E[id];
        if (!vis[e.Y] && !markE[id]) {
            markE[id] = true;
            markE[id ^ 1] = true;
            ans[id ^ dif[u]] = true;
            dif[e.Y] = dif[u];
            dif[u] ^= 1;
            dfs(e.Y);
        }
    }
}
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
    //freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
    int T, u, v, m;
    cin >> T;
    while (T --) {
        cin >> n >> m;
        SZ = 0;
        fillchar(last, -1);
        fillchar(Next, -1);
        fillchar(ans, 0);
        fillchar(vis, 0);
        fillchar(markE, 0);
        for (int i = 0; i < m; i ++) {
            scanf("%d%d", &u, &v);
            add(u, v);
        }
        for (int i = 1; i <= n; i ++) mark[i] = last[i];
        for (int i = 1; i <= n; i ++) {
            if (!vis[i]) DeleteRing(i);
        }
        fillchar(vis, 0);
        fillchar(dif, 0);
 
        for (int i = 1; i <= n; i ++) {
            if (!vis[i]) dfs(i);
        }
        for (int i = 0; i < SZ; i += 2) {
            printf("%d\n", ans[i]);
        }
    }
    return 0;
}

[hdu5348]图上找环,删环的更多相关文章

  1. HDU 2147 kiki's game(博弈图上找规律)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2147 题目大意:给你一个n*m的棋盘,初始位置为(1,m),两人轮流操作,每次只能向下,左,左下这三个 ...

  2. HDU 1253 三维数组的图上找最短路

    题目大意: 从三维空间的(0,0,0)出发到(a-1,b-1,c-1),每移动一个都要时间加一,计算最短时间 根据六个方向,开个bfs,像spfa那样计算最短路径就行了,但是要1200多ms,也不知道 ...

  3. 【学习笔记】有向无环图上的DP

    手动博客搬家: 本文发表于20180716 10:49:04, 原地址https://blog.csdn.net/suncongbo/article/details/81061378 首先,感谢以下几 ...

  4. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

  5. qbxt的题:找一个三元环

    有向图中找一个三元环 题意: 考虑 N 个人玩一个游戏, 任意两个人之间进行一场游戏 (共 N*(N-1)/2 场),且每场一定能分出胜负.现在,你需要在其中找到三个人构成的这样的局面:A战胜B,B战 ...

  6. SPFA找最大比例环

    SPFA找最大比例环 ans=Σ点权/Σ边权 所以 可以变式为 Σ边权*ans-Σ点权=0 要找出最大的ans 可以二分 边权值变为 目的地点权-ans*边权 检查是否有负环 有则可以更优 #incl ...

  7. 动态规划 洛谷P4017 最大食物链计数——图上动态规划 拓扑排序

    洛谷P4017 最大食物链计数 这是洛谷一题普及/提高-的题目,也是我第一次做的一题 图上动态规划/拓扑排序 ,我认为这题是很好的学习拓扑排序的题目. 在这题中,我学到了几个名词,入度,出度,及没有环 ...

  8. thinkphp5多图上传 js部分

    在项目中常会用到多图上上传,那就需要多图上传后需要预览,并且能删掉传错(不想传)的图,然而 测试了半天 并不知道jq怎么写,parent()parents()用了半天无果,罢了,还是用原生js来写.这 ...

  9. 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

    2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] ​ 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...

随机推荐

  1. [转载]利用分块传输绕过WAF进行SQL注入

    原理 客户端给服务器发送数据的时候,如果我们利用协议去制作payload,就可以绕过http协议的waf,实现SQL注入 分块传输编码(Chunked transfer encoding)是HTTP中 ...

  2. API加密框架monkey-api-encrypt发布1.2版本

    框架介绍 monkey-api-encrypt 是我之前写的一个API加密的框架,主要是将加密/解密的逻辑交给框架实现,等数据到达Controller后自动解密了,让开发人员不需要关注数据的加解密操作 ...

  3. 如何使用Jsoup爬取网页内容

    前言: 这是一篇迟到很久的文章了,人真的是越来越懒,前一阵用jsoup实现了一个功能,个人觉得和selenium的webdriver原理类似,所以今天正好有时间,就又来更新分享了. 实现场景: 爬取博 ...

  4. python 基础篇 模块化

    在做项目的时候,虽然你不可能把全世界的代码都放到一个文件夹下,但是类似模块化的思想还是要有的--那就是以项目的根目录作为最基本的目录,所有的模块调用,都要通过根目录一层层向下索引的方式来 import ...

  5. awk,seq,xarg实例使用

    基于https://www.cnblogs.com/wangyuebo/p/5836933.html的详细补充讲解 [root@localhost awk]# seq 10|xargs -n 2 &g ...

  6. 2019-2020-1 20199329《Linux内核原理与分析》第七周作业

    <Linux内核原理与分析>第七周作业 一.本周内容概述: 对Linux系统如何创建一个新进程进行追踪 分析Linux内核创建一个新进程的过程 二.本周学习内容: 1.学习进程的描述 操作 ...

  7. 【Linux常见命令】lsof命令

    lsof - list open files lsof命令用于查看你进程打开的文件,进程打开的端口(TCP.UDP),找回/恢复删除的文件,打开文件的进程. 语法: lsof [选项] [文件] 常用 ...

  8. docker中安装nginx,部署前端代码

    最近在学习docker,初次接触,难免遇到磕磕碰碰,遂将其整理成博客,以便日后查看. 1.拉取nginx镜像 直接从官方镜像库拉取简单粗暴: docker pull nginx 2.运行 docker ...

  9. jQuery里面click、this事件遇到(Django模型里for)相同的id名和class名想获取值

    遇到的原型是这样的!下面我把它简化一下; click事件: 在浏览器里面只能获取横线上面的值,和下面的第一个值!! 这是因为id等级比class高,而且js要求id不能重复! 当 转载于:https: ...

  10. MySQL数据库的套接字文件和pid文件

    MySQL数据库的套接字文件和pid文件 socket文件:当用Unix域套接字方式进行连接时需要的文件. pid文件:MySQL实例的进程ID文件. MySQL表结构文件:用来存放MySQL表结构定 ...