作者:Walker

SVM是机器学习有监督学习的一种方法,常用于解决分类问题,其基本原理是:在特征空间里寻找一个超平面,以最小的错分率把正负样本分开。因为SVM既能达到工业界的要求,机器学习研究者又能知道其背后的原理,所以SVM有着举足轻重的地位。

但是我们之前接触过的SVM都是单核的,即它是基于单个特征空间的。在实际应用中往往需要根据我们的经验来选择不同的核函数(如:高斯核函数、多项式核函数等)、指定不同的参数,这样不仅不方便而且当数据集的特征是异构时,效果也没有那么好。正是基于SVM单核学习存在的上述问题,同时利用多个核函数进行映射的多核学习模型(MKL)应用而生。

多核模型比单个核函数具有更高的灵活性。在多核映射的背景下,高维空间成为由多个特征空间组合而成的组合空间。由于组合空间充分发挥了各个基本核的不同特征映射能力,能够将异构数据的不同特征分量分别通过相应的核函数得到解决。目前主流的多核学习方法主要包括合成核方法、多尺度核方法和无限核方法。其具体流程如图1所示:

图1 多核学习流程图

接下来我们以二分类问题为例,为大家简单介绍多核学习方法。令训练数据集为X={(x1,y1),(x2,y2),(x3,y3)…(xn,yn)},其中Xi是输入特征,且Xi∈Rd,i= 1,2, …, N,Yi∈{+1, −1}是类标签。SVM 算法目标在于最大化间隔,其模型的原始问题可以表示为:

其中,w是待求的权重向量,ζi与C分别是松弛变量和惩罚系数。根据拉格朗日对偶性以及 KKT 条件,引入核函数K( Xi , Xj): Rn×Rn → R,原始问题也可以转换成如下最优化的形式:

其中,ai与aj为拉格朗日乘子,核函数K( Xi, Xj)=φ(xi) xφ(xj)。核方法的思想就是,在学习与预测中不显示地定义映射函数φ(xi) ,只定义核函数K( Xi, Xj),直接在原低维空间中计算高维空间中的向量内积,既实现低维样本空间到高维特征空间的映射,又不增加计算复杂量。

多核学习方法是单核 SVM 的拓展,其目标是确定 M 个个核函数的最优组合,使得间距最大,可以用如下优化问题表示:

其中∆= {θ∈ ℝ+|θTeM=1},表示 M 个核函数的凸组合的系数,eM是一个向量,M个元素全是 1,K(θ)=∑Mj=1θjkj(∙,∙)代表最终的核函数,其中kj(∙,∙)是第j个核函数。与单核 SVM 一样,可以将上式如下转化:

其中Kj∈ RNxN,Ω={a|a∈[0,C]N},“∗”被定义为向量的点积,即(1,0)∗(2,3) = (1 ×2 ,0×3)=(2,0)。通过对比 MKL 与单核 SVM 所对应的优化问题形式,求解多核学习问题的计算复杂度与难度会远大于单核 SVM,所以研究出一种高效且稳定的算法来解决传统多核学习中的优化难题,仍然很具有挑战性。

综上所示,尽管多核学习在解决一些异构数据集问题上表现出了非常优秀的性能,但不得不说效率是多核学习发展的最大瓶颈。首先,空间方面,多核学习算法由于需要计算各个核矩阵对应的核组合系数,需要多个核矩阵共同参加运算。也就是说,多个核矩阵需要同时存储在内存中,如果样本的个数过多,那么核矩阵的维数也会非常大,如果核的个数也很多,这无疑会占用很大的内存空间。其次,时间方面,传统的求解核组合参数的方法即是转化为SDP优化问题求解,而求解SDP问题需要使用内点法,非常耗费时间,尽管后续的一些改进算法能在耗费的时间上有所减少,但依然不能有效的降低时间复杂度。高耗的时间和空间复杂度是导致多核学习算法不能广泛应用的一个重要原因。

下篇预告:不同核学习方法的研究。

参考文献:Research on Multiple Kernel Boosting Learning Algorithm

Fast Multiple Kernel Learning for Classification and Application

Research on Multiple Kernel Learning Algorithms and Their Applications

SVM多核学习方法简介的更多相关文章

  1. 【转】SVM入门(一)SVM的八股简介

    (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够 ...

  2. 不平衡数据下的机器学习方法简介 imbalanced time series classification

    imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...

  3. 模式识别之svm()---支持向量机svm 简介1995

    转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjav ...

  4. 支撑向量机(SVM)

    转载自http://blog.csdn.net/passball/article/details/7661887,写的很好,虽然那人也是转了别人的做了整理(最原始文章来自http://www.blog ...

  5. Spark机器学习系列之13: 支持向量机SVM

    Spark 优缺点分析 以下翻译自Scikit. The advantages of support vector machines are: (1)Effective in high dimensi ...

  6. SVM原理 (转载)

    1. 线性分类SVM面临的问题 有时候本来数据的确是可分的,也就是说可以用 线性分类SVM的学习方法来求解,但是却因为混入了异常点,导致不能线性可分,比如下图,本来数据是可以按下面的实线来做超平面分离 ...

  7. 5. 支持向量机(SVM)软间隔

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  8. 4. 支持向量机(SVM)原理

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  9. 机器学习——支持向量机SVM

    前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型, ...

随机推荐

  1. 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(11.2)- FlexSPI NOR连接方式大全(RT1060/1064(SIP))

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1060/1064(SIP)两款MCU的FlexSPI NOR启动的连接方式. 上一篇文章<FlexSPI N ...

  2. 7-36 jmu-python-统计字符个数 (10 分)

    输入一个字符串,统计其中数字字符及小写字符的个数 输入格式: 输入一行字符串 输出格式: 共有?个数字,?个小写字符,?填入对应数量 输入样例: helo134ss12 输出样例: 共有5个数字,6个 ...

  3. Swift --闭包表达式与闭包(汇编分析)

    在Swift中,可以通过func定义一个函数,也可以通过闭包表达式定义一个函数! 一.闭包表达式 概念 闭包表达式与定义函数的语法相对比,有区别如下: 去除了func 去除函数名 返回值类型添加了关键 ...

  4. 如何使用API提交转码任务?

    摘要: 当常规的转码工作流无法满足用户的场景时,需用户自己判断业务逻辑,并使用API提交转码任务.例如:并不是所有的视频都需要转码,不同视频需要设置不同的转码配置.本文将介绍API提交转码任务的方法. ...

  5. 解决微信小程序视频组件层级过高的问题

    本文首发于我的个人博客:http://www.fogcrane.org 前言 在微信小程序的开发中,总有一些"VIP"组件,他们的层级,高得让人抓狂,总是凌驾于很多其他低层级组件之 ...

  6. vue 动态加载图片路径报错解决方法

    最近遇到图片路径加载报错的问题 之前一直都是把图片放到assets的文件下的.总是报错,看到一些文章并且尝试成功了,特意记录下 首先先说明下vue-cli的assets和static的两个文件的区别, ...

  7. mybatis深入之动态查询和连接池介绍

    mybatis深入之动态查询和连接池介绍 一.mybatis条件查询 在mybatis前述案例中,我们的查询条件都是确定的.但在实际使用的时候,我们的查询条件有可能是动态变化的.例如,查询参数为一个u ...

  8. Vue2.0 【第一季】第4节 v-text & v-html

    目录 Vue2.0 [第一季]第4节 v-text & v-html 第四节 v-text & v-html Vue2.0 [第一季]第4节 v-text & v-html 第 ...

  9. celery订单定时回滚

    目录 订单回滚 控制执行(多少时间后执行) celery异步定时任务 订单回滚 用celery异步,定时任务.可以设置:如果下单15分钟后没有支付,则取消订单.做反向操作 控制执行(多少时间后执行) ...

  10. vue-element框架通过blob进行后端token权限验证下载

    在项目中,后端要求下载时要进行后端的权限验证,发现a链接进行直接下载无法满足这个需求,只能通过blob对象来进行下载操作,翻阅大量资料最后实现该功能.以下是我个人的理解,如有不足,请各位大佬多指教 / ...