K最邻近算法(下)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets import make_regression
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split wine_dataset = load_wine()
X_train,X_test,y_train,y_test = train_test_split(wine_dataset['data'],wine_dataset['target'],random_state=0)
#将random_state = 0是因为tarin_test_split函数会生成一个为随机函数,并且会根据这个伪随机数对数据集进行拆分
knn = KNeighborsRegressor(n_neighbors=1) #查看参数设定
knn.fit(X_train,y_train)
print(knn)
print('模型得分:{:,.2f}'.format(knn.score(X_test,y_test))) #预测新红酒的分类
X_new = np.array([[13.2, 2.77, 2.51, 18.5, 96.6, 1.04, 2.55, 0.57, 1.47, 6.21, 1.05, 3.33, 820]])
prediction = knn.predict(X_new)
print("预测新红酒的分类为:{}".format(wine_dataset['target_names'][prediction]))
#print('X-_train shape:{}'.format(X_train.shape))
# print("红酒数据集中的键:\n{}".format(wine_dataset.keys()))
#
# print("数据概况:{}".format(wine_dataset['data'].shape))
#
# print(wine_dataset['DESCR'])
以上代码是一个关于酒分类的问题
具体的后面还会继续做
K最邻近算法(下)的更多相关文章
- k最邻近算法——使用kNN进行手写识别
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的 ...
- 2-KNN(K最邻近算法)
KNN基本思想: 1.事先存在已经分类好的样本数据(如分别在A类.B类.C类等) 2.计算待分类的数据(叫做新数据)与所有样本数据的距离 3.选择K个与新数据距离最近的的样本,并统计这K个样本所属的分 ...
- k最邻近算法——加权kNN
加权kNN 上篇文章中提到为每个点的距离增加一个权重,使得距离近的点可以得到更大的权重,在此描述如何加权. 反函数 该方法最简单的形式是返回距离的倒数,比如距离d,权重1/d.有时候,完全一样或非常接 ...
- [机器学习] ——KNN K-最邻近算法
KNN分类算法,是理论上比较成熟的方法,也是最简单的机器学习算法之一. 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别 ...
- 监督学习——K邻近算法及数字识别实践
1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似( ...
- kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
- Python实现kNN(k邻近算法)
Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...
- k邻近算法(KNN)实例
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...
随机推荐
- 为U盘装备Ubuntu工作学习两不误
题记: 在上一篇文章中,我介绍了让Ubuntu 10.04完美支持Thinkpad小红点Trackpoint.看上去,显得有些不痛不痒,实际上有些同学会因为小红点中键不能正常使用,而放弃在Th ...
- 【快学springboot】13.操作redis之String数据结构
前言 在之前的文章中,讲解了使用redis解决集群环境session共享的问题[快学springboot]11.整合redis实现session共享,这里已经引入了redis相关的依赖,并且通过spr ...
- 【快学springboot】7.使用Spring Boot Jpa
jpa简介 Jpa (Java Persistence API) 是 Sun 官方提出的 Java 持久化规范.它为 Java 开发人员提供了一种对象/关联映射工具来管理 Java 应用中的关系数据. ...
- java并发:interrupt进程终止
interrupt进程终止 interrupt()源码 /** * Interrupts this thread. * * <p> Unless the current thread is ...
- 多线程分析之Semaphore
Semaphore分析由来 网上看了许多讲解Semaphore的,用Semaphore来实现顺序打印字母,但是可能大家都没有清楚具体的原因,所以来给大家分析下为什么可以使用Semaphore来实现顺序 ...
- 无法通过128在表空间temp中扩展temp字段
truncate 表后在执行,这个原因是数据太大了
- Python2 和 Python3 编码问题
基本存储单元 位(bit, b):二进制数中的一个数位,可以是0或者1,是计算机中数据的最小单位. 字节(Byte,B):计算机中数据的基本单位,每8位组成一个字节. 1B = 8b 各种信息在计算机 ...
- Django 数据库访问性能优化
使用标准的数据库优化技术: 在进行Django数据库访问性能优化之前,首先应该使用标准的数据库技术对其进行优化,比如给字段加索引,通过使用 django.db.models.Field.db_inde ...
- vim修改缩进问题
- SpringBoo#Mybatis多个数据源配置,Sqlite&Mysql
第一步:排除数据源的自动配置类: @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class}) 第二步:定义好两个数据源的 ...