第九章:关键利率久期和 VaR 分析

思维导图

一些想法

  • 在解关键方程的时候施加 \(L^1\) 约束也许可以得到“稀疏解”,进而减少交易成本。
  • 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限。

有关现金流映射技术的推导

已知,

\[
\Delta y(t) =
\begin{cases}
\Delta y(t_{first}) & t \le t_{first}\\
\Delta y(t_{last}) & t \ge t_{last}\\
\alpha \Delta y(t_{left}) + (1-\alpha) \Delta y(t_{right})& \text{ else}
\end{cases}
\]

\[
\alpha = \frac{t_{right}-t}{t_{right} - t_{left}}
\]

\[
t_{left} < t < t_{right}
\]

求解 \(CF_{left}\)、\(CF_{right}\) 和 \(CF_0\) 使得:

\[
\begin{aligned}
P &= \frac{CF_t}{e^{y(t)t}} \\
&= \frac{CF_{left}}{e^{y(t_{left})t_{left}}} + \frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0
\end{aligned} \tag{1}
\]

要求关键利率久期不变,那么:

\[
\begin{aligned}
\frac{1}{P} \frac{\partial P}{\partial y(t_{left})}
&=\frac{1}{P} \frac{\partial P}{\partial y(t)} \frac{\partial y(t)}{\partial y(t_{left})}\\
&\approx\frac{1}{P} \frac{\partial P}{\partial y(t)} \frac{\Delta y(t)}{\Delta y(t_{left})}\\
&\approx-\frac{1}{P} \frac{CF_t\times t}{e^{y(t)t}} \alpha\\
&=-t\alpha \\
\frac{1}{P} \frac{\partial P}{\partial y(t_{left})}
&=\frac{1}{P} \frac{\partial \left(\frac{CF_{left}}{e^{y(t_{left})t_{left}}} + \frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 \right) }{\partial y(t_{left})}\\
&=-\frac{1}{P} \frac{CF_{left}\times t_{left}}{e^{y(t_{left})t_{left}}}
\end{aligned}
\]

解出

\[
CF_{left} = \frac{t \alpha P e^{y(t_{left})t_{left}}}{t_{left}} \tag{2}
\]

同理解出

\[
CF_{right} = \frac{t (1-\alpha) P e^{y(t_{right})t_{right}}}{t_{right}} \tag{3}
\]

(2)和(3)代入(1)解出

\[
CF_0 = P \times \frac{(t-t_{left})(t-t_{right})}{t_{left} \times t_{right}}
\]

《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析的更多相关文章

  1. 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型

    目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...

  2. 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性

    目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子

  3. 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览

    目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...

  4. 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量

    目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的 ...

  5. 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构

    目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种

  6. 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲

    目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...

  7. 《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析

    目录 第十章:主成分模型与 VaR 分析 思维导图 一些想法 推导 PCD.PCC 和 KRD.KRC 的关系 PCD 和 KRD PCC 和 KRC 第十章:主成分模型与 VaR 分析 思维导图 一 ...

  8. Android群英传笔记——第九章:Android系统信息和安全机制

    Android群英传笔记--第九章:Android系统信息和安全机制 本书也正式的进入尾声了,在android的世界了,不同的软件,硬件信息就像一个国家的经济水平,军事水平,不同的配置参数,代表着一个 ...

  9. o'Reill的SVG精髓(第二版)学习笔记——第九章

    第九章:文本 9.1 字符:在XML文档中,字符是指带有一个数字值的一个或多个字节,数字只与Unicode标准对应. 符号:符号(glyph)是指字符的视觉呈现.每个字符都可以用很多不同的符号来呈现. ...

随机推荐

  1. PHP转换oracle数据库的date类型

    今天圣诞节啊,圣诞节快乐啊! 最近遇到一个很纠结的事,就是我在plsql里面查的是这样的,很正常, 但是我用程序查出来就是这样的,啊啊啊,真是崩溃啊 但是我传数据需要上面那种格式,而且我对oracle ...

  2. 多进程manager共享

    使用manager在进程之间事项共享数据. 栗子: 主进程调用manager,创建一个字典d和一个列表l,启动十个子进程,每个子进程都向d和l中放数据 from multiprocessing imp ...

  3. android nfc功能开发

    链接:Android NFC开发详细总结   https://blog.csdn.net/zhwadezh/article/details/79111348 链接2:Android NFC功能 简单实 ...

  4. react组件之间传值方式

    1.父向子(通过props传值) 2.父向更深层的子(通过context传值) 3.子向父(通过回调函数传值:在父组件中创建一个函数来接收子组件传过来的参数值,通过父组件将这个函数做为子组件的属性传递 ...

  5. C++中的拷贝构造函数

    一.拷贝构造函数: 格式: A(const  A& a);  总结: 系统为对象B分配了内存并完成了与对象testA的复制过程,就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过 ...

  6. MongoDB - 运行

    运行 mongod --dbpath (mongod is the "Mongo Daemon") 在shell用mongo或者用studio 3t可视化连接 创建用户 db.cr ...

  7. leetcode菜鸡斗智斗勇系列(9)--- Range Sum of BST

    1.原题: https://leetcode.com/problems/range-sum-of-bst/ Given the root node of a binary search tree, r ...

  8. SmartAssembly批处理用法

    在SmartAssembly.exe根目录有个SmartAssembly.com . 在命令行执行SmartAssembly.com就能看到所有的命令参数了. 用SmartAssembly.exe建好 ...

  9. Java面向对象编程 -3.3

    综合实战 简单Java类 在以后进行项目开发与设计的过程之中,简单Java类都将作为一个重要的组成部分存在,慢慢接触到正规的项目设计后, 简单Java类无处不再,并且有可能产生一系列的变化. 所谓的简 ...

  10. vue项目中vant tab改变标签颜色

    找了几种方法,只有下面这个方法是生效的: <van-tabs v-model="active" sticky title-active-color="#144a9e ...