tex文档:

  1. \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size (remove a4paper for US letter paper)
  2. \usepackage{amsmath,amsfonts,bm}
  3. \usepackage{hyperref}
  4. \usepackage{amsthm,epigraph}
  5. \usepackage{amssymb}
  6. \usepackage{framed,mdframed}
  7. \usepackage{graphicx,color}
  8. \usepackage{mathrsfs,xcolor}
  9. \usepackage[all]{xy}
  10. \usepackage{fancybox}
  11. \usepackage{CJKutf8}
  12. \newtheorem*{adtheorem}{定理}
  13. %\setCJKmainfont[BoldFont=FZYaoTi,ItalicFont=FZYaoTi]{FZYaoTi}
  14. \definecolor{shadecolor}{rgb}{1.0,0.9,0.9} %背景色为浅红色
  15. \newenvironment{theorem}
  16. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{adtheorem}}
  17. {\end{adtheorem}\end{mdframed}\bigskip}
  18. \newtheorem*{bdtheorem}{定义}
  19. \newenvironment{definition}
  20. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{bdtheorem}}
  21. {\end{bdtheorem}\end{mdframed}\bigskip}
  22. \newtheorem*{cdtheorem}{Exercise}
  23. \newenvironment{exercise}
  24. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{cdtheorem}}
  25. {\end{cdtheorem}\end{mdframed}\bigskip}
  26. \newtheorem*{ddtheorem}{注}
  27. \newenvironment{remark}
  28. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{ddtheorem}}
  29. {\end{ddtheorem}\end{mdframed}\bigskip}
  30. \newtheorem*{edtheorem}{引理}
  31. \newenvironment{lemma}
  32. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{edtheorem}}
  33. {\end{edtheorem}\end{mdframed}\bigskip}
  34. \newtheorem*{pdtheorem}{例}
  35. \newenvironment{example}
  36. {\bigskip\begin{mdframed}[backgroundcolor=gray!,rightline=false,leftline=false,topline=false,bottomline=false]\begin{pdtheorem}}
  37. {\end{pdtheorem}\end{mdframed}\bigskip}
  38.  
  39. \usepackage[protrusion=true,expansion=true]{microtype} % Better typography
  40. \usepackage{wrapfig} % Allows in-line images
  41. \usepackage{mathpazo} % Use the Palatino font
  42. \usepackage[T1]{fontenc} % Required for accented characters
  43. \linespread{1.05} % Change line spacing here, Palatino benefits from a slight increase by default
  44.  
  45. \makeatletter
  46. \renewcommand\@biblabel[]{\textbf{#.}} % Change the square brackets for each bibliography item from '[1]' to '1.'
  47. \renewcommand{\@listI}{\itemsep=0pt} % Reduce the space between items in the itemize and enumerate environments and the bibliography
  48.  
  49. \renewcommand{\maketitle}{ % Customize the title - do not edit title
  50. % and author name here, see the TITLE block
  51. % below
  52. \renewcommand\refname{参考文献}
  53. \newcommand{\D}{\displaystyle}\newcommand{\ri}{\Rightarrow}
  54. \newcommand{\ds}{\displaystyle} \renewcommand{\ni}{\noindent}
  55. \newcommand{\pa}{\partial} \newcommand{\Om}{\Omega}
  56. \newcommand{\om}{\omega} \newcommand{\sik}{\sum_{i=}^k}
  57. \newcommand{\vov}{\Vert\omega\Vert} \newcommand{\Umy}{U_{\mu_i,y^i}}
  58. \newcommand{\lamns}{\lambda_n^{^{\scriptstyle\sigma}}}
  59. \newcommand{\chiomn}{\chi_{_{\Omega_n}}}
  60. \newcommand{\ullim}{\underline{\lim}} \newcommand{\bsy}{\boldsymbol}
  61. \newcommand{\mvb}{\mathversion{bold}} \newcommand{\la}{\lambda}
  62. \newcommand{\La}{\Lambda} \newcommand{\va}{\varepsilon}
  63. \newcommand{\be}{\beta} \newcommand{\al}{\alpha}
  64. \newcommand{\dis}{\displaystyle} \newcommand{\R}{{\mathbb R}}
  65. \newcommand{\N}{{\mathbb N}} \newcommand{\cF}{{\mathcal F}}
  66. \newcommand{\gB}{{\mathfrak B}} \newcommand{\eps}{\epsilon}
  67. \begin{flushright} % Right align
  68. {\LARGE\@title} % Increase the font size of the title
  69.  
  70. \vspace{50pt} % Some vertical space between the title and author name
  71.  
  72. {\large\@author} % Author name
  73. \\\@date % Date
  74.  
  75. \vspace{40pt} % Some vertical space between the author block and abstract
  76. \end{flushright}
  77. }
  78.  
  79. % ----------------------------------------------------------------------------------------
  80. % TITLE
  81. % ----------------------------------------------------------------------------------------
  82. \begin{document}
  83. \begin{CJK}{UTF8}{gkai}
  84. \title{\textbf{Symmetry Methods for Differential Equations:\\Exercise 1.4}}
  85. % \setlength\epigraphwidth{0.7\linewidth}
  86. \author{\small{叶卢庆}\\{\small{杭州师范大学理学院,学号:}}\\{\small{Email:h5411167@gmail.com}}} % Institution
  87. \renewcommand{\today}{\number\year. \number\month. \number\day}
  88. \date{\today} % Date
  89.  
  90. % ----------------------------------------------------------------------------------------
  91.  
  92. \maketitle % Print the title section
  93.  
  94. % ----------------------------------------------------------------------------------------
  95. % ABSTRACT AND KEYWORDS
  96. % ----------------------------------------------------------------------------------------
  97.  
  98. % \renewcommand{\abstractname}{摘要} % Uncomment to change the name of the abstract to something else
  99.  
  100. % \begin{abstract}
  101.  
  102. % \end{abstract}
  103.  
  104. % \hspace*{,6mm}\textit{关键词:} % Keywords
  105.  
  106. % \vspace{30pt} % Some vertical space between the abstract and first section
  107.  
  108. % ----------------------------------------------------------------------------------------
  109. % ESSAY BODY
  110. % ----------------------------------------------------------------------------------------
  111. \begin{exercise}[1.4]
  112. Determine the value of $\alpha$ for which
  113. $$
  114. (x',y')=(x+\va,ye^{\alpha\va})
  115. $$
  116. is a symmetry of
  117. $$
  118. \frac{dy}{dx}=y^2e^{-x}+y+e^x
  119. $$
  120. for all $\va\in\mathbf{R}$.
  121. \end{exercise}
  122. \begin{proof}
  123. The symmetry condition for the differential equation is
  124. $$
  125. \frac{\frac{\pa g}{\pa x}+\frac{\pa g}{\pa y}w(x,y)}{\frac{\pa f}{\pa
  126. x}+\frac{\pa f}{\pa y}w(x,y)}=w(f(x,y),g(x,y)).
  127. $$
  128. Where
  129. $w(x,y)=y^2e^{-x}+y+e^x$,$f(x,y)=x+\va,g(x,y)=ye^{\alpha\va}$.So the
  130. symmetry condition can be written as
  131. $$
  132. y^2e^{-x+\alpha\va}+e^{x+\alpha\va}=y^2e^{\alpha\va-x-\va}+e^{x+\va}.
  133. $$
  134. So $\alpha=$.
  135. \end{proof}
  136. % ----------------------------------------------------------------------------------------
  137. % BIBLIOGRAPHY
  138. % ----------------------------------------------------------------------------------------
  139.  
  140. \bibliographystyle{unsrt}
  141.  
  142. \bibliography{sample}
  143.  
  144. % ----------------------------------------------------------------------------------------
  145. \end{CJK}
  146. \end{document}

symmetry methods for differential equations,exercise 1.4的更多相关文章

  1. Introduction to Differential Equations,Exercise 1.1,1.5,1.6,1.8,1.9,1.10

    As noted,if $z=x+iy$,$x,y\in\mathbf{R}$,then $|z|=\sqrt{x^2+y^2}$ is equivalent to $|z|^2=z\overline ...

  2. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  3. A Basic Course in Partial Differential Equations

    A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, ...

  4. 【线性代数】6-3:微分方程的应用(Applications to Differential Equations)

    title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algeb ...

  5. NIPS2018最佳论文解读:Neural Ordinary Differential Equations

    NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurI ...

  6. Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记

    此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...

  7. Solving ordinary differential equations I(Nonstiff Problems),Exercise 1.2:A wrong solution

    (Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ ...

  8. Solving ordinary differential equations I(nonstiff problems),exercise 1.1

    Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using ...

  9. PP: Neural ordinary differential equations

    Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hi ...

随机推荐

  1. UVA - 679 Dropping Balls(二叉树的编号)

    题意:二叉树按层次遍历从1开始标号,所有叶子结点深度相同,每个结点开关初始状态皆为关闭,小球从根结点开始下落(小球落在结点开关上会使结点开关状态改变),若结点开关关闭,则小球往左走,否则往右走,给定二 ...

  2. uni-app开发小程序-使用uni.switchTab跳转后页面不刷新的问题

    uni.switchTab({ url: '/pages/discover/discover', success: function(e) { var page = getCurrentPages() ...

  3. maven-本地安装jar包

    maven 安装本地jar包,通过install插件的install-file mojo进行工作,具体可通过如下命令进行查看 mvn help:describe -Dplugin=install -D ...

  4. Go语言 一维数组的使用

    程序源码 package main import ( "fmt" // 导入 fmt 包,打印字符串是需要用到 ) func main() { // 声明 main 主函数 var ...

  5. 050-PHP除法运算

    <?php $n=10/3; //除法运算 echo $n; //输出变量n的值 ?>

  6. 058-PHP中goto语句的使用

    <?php for($i=1;$i<=5;$i++){ //使用for循环循环输出1~5 if($i==3) goto ECH; //当$i为3时候跳出for循环 echo "$ ...

  7. 三、jsx简化教程

    1)使用 JSX 的好处 1.提供更加语意化且易懂的标签 与html对比 <!--HTML写法--> <form class="messageBox"> & ...

  8. C#如何编写短信接口,以及接口的调用,包括C#.net访问web,并处理返回值的简例。

    在系统的开发中我们经常会用到接口,下面给大家介绍一种短信接口的编写与调用. 我们常调用接口来完成一些信息的通知或者发送验证码,那么这些操作是如何完成的呢?来看一下详细的介绍吧! 首先呢,我们需要有一个 ...

  9. 装饰者模式(Decorator Pattern)C#版本的

    仍然来自 zhili https://www.cnblogs.com/zhili/p/DecoratorPattern.html 谢谢啊 呵呵 ---------------------------- ...

  10. 小白学Python——Anaconda安装

    小白:Mr.林,快救救我,我被那些数据压得喘不过气了. Mr.林:小白,表方,怎么了? !   小白:Mr.林,我从公司数据平台上下了一堆数据,如果选择时间范围广的话,平台就卡的动不了,动不动还奔溃, ...