CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
One of the most common tasks in CUDA programming is to parallelize a loop using a kernel. As an example, let’s use our old friend SAXPY. Here’s the basic sequential implementation, which uses a for loop. To efficiently parallelize this, we need to launch enough threads to fully utilize the GPU.
CUDA编程最常见的任务之一就是用一个kernel来并行化一个循环。比如,对于我们老朋友SAXPY,下面是一个基础的使用循环的实现。为了效率地并行化它,我们需要运行大量的线程来充分利用GPU。
void saxpy(int n, float a, float *x, float *y)
{
for (int i = ; i < n; ++i)
y[i] = a * x[i] + y[i];
}
Common CUDA guidance is to launch one thread per data element, which means to parallelize the above SAXPY loop we write a kernel that assumes we have enough threads to more than cover the array size.
通常CUDA指引会为每一个数据元素运行一个线程,意味着要并行化上述的SAXPY循环,我们需要假设我们写的kernel要有足够的线程以满足数组的大小。
__global__
void saxpy(int n, float a, float *x, float *y)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];
}
I’ll refer to this style of kernel as a monolithic kernel, because it assumes a single large grid of threads to process the entire array in one pass. You might use the following code to launch the saxpy kernel to process one million elements.
我称这类kernel为monolithic kernel,因为它假设存在单个大的线程网格在一次同时处理,运行整个数组运算。你需要用下面的代码来运行一个具有百万元素的saxpy kernel
// Perform SAXPY on 1M elements
saxpy<<<,>>>(<<, 2.0, x, y);
Instead of completely eliminating the loop when parallelizing the computation, I recommend to use a grid-stride loop, as in the following kernel.
相比在并行化计算时完全消去循环,我更推荐使用一种grid-stride loop,如下
__global__
void saxpy(int n, float a, float *x, float *y)
{
for (int i = blockIdx.x * blockDim.x + threadIdx.x;
i < n;
i += blockDim.x * gridDim.x)
{
y[i] = a * x[i] + y[i];
}
}
Rather than assume that the thread grid is large enough to cover the entire data array, this kernel loops over the data array one grid-size at a time.
比起假设线程网格足够大得覆盖整个数组,这个kernel运行一次,就对数组进行一个grid-size的循环。
Notice that the stride of the loop is blockDim.x * gridDim.x
which is the total number of threads in the grid. So if there are 1280 threads in the grid, thread 0 will compute elements 0, 1280, 2560, etc. This is why I call this a grid-stride loop. By using a loop with stride equal to the grid size, we ensure that all addressing within warps is unit-stride, so we get maximum memory coalescing, just as in the monolithic version.
注意到这个循环的跨度是 blockDim.x * gridDim.x,它是一个线程网格中所有线程的数量。如果该线程网格中有1280个线程,那么编号为0的线程将执行元素0,1280,2560……这就是为什么我称之为“grid-stride loop”。使用一个跨度等于网格大小的循环,我们可以保证了所有地址都是unit-stride的,于是我们比起monolithic的版本减少了最大的内存消耗。
When launched with a grid large enough to cover all iterations of the loop, the grid-stride loop should have essentially the same instruction cost as the if
statement in the monolithic kernel, because the loop increment will only be evaluated when the loop condition evaluates to true.
grid-stride循环比起monolithic kernel,也会需要相同的计算消耗在if语句上,因为循环的条件为真时循环才会继续进行(在这里隐式地产生了if的消耗)。
There are several benefits to using a grid-stride loop.
1.Scalability and thread reuse. By using a loop, you can support any problem size even if it exceeds the largest grid size your CUDA device supports. Moreover, you can limit the number of blocks you use to tune performance. For example, it’s often useful to launch a number of blocks that is a multiple of the number of multiprocessors on the device, to balance utilization. As an example, we might launch the loop version of the kernel like this.
1.稳定性及线程复用。当使用一个循环,你可以支持任何显存大小的运算甚至包括它超出了CUDA设备(一次性)支持的最大值。除此之外,你可以限制线程块数量来调整运行效率。比如,为平衡资源使用,载入一定数量的具有不同multiprocessors的线程块,是非常有用的。
int numSMs;
cudaDeviceGetAttribute(&numSMs, cudaDevAttrMultiProcessorCount, devId);
// Perform SAXPY on 1M elements
saxpy<<<*numSMs, >>>( << , 2.0, x, y);
CUDA Pro Tip: Write Flexible Kernels with Grid-Stride Loops的更多相关文章
- CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics
In this post, I’ll introduce warp-aggregated atomics, a useful technique to improve performance when ...
- CUDA Pro:通过向量化内存访问提高性能
CUDA Pro:通过向量化内存访问提高性能 许多CUDA内核受带宽限制,而新硬件中触发器与带宽的比率不断提高,导致带宽受限制的内核更多.这使得采取措施减轻代码中的带宽瓶颈非常重要.本文将展示如何在C ...
- cuda编程-卷积优化
CUDA Convolution https://www.evl.uic.edu/sjames/cs525/final.html Improve Image Processing Using GPU ...
- CUDA 8混合精度编程
CUDA 8混合精度编程 Mixed-Precision Programming with CUDA 8 论文地址:https://devblogs.nvidia.com/mixed-precisio ...
- Ext.js中的tip事件实际使用
Ext.onReady(function () { // Init the singleton. Any tag-based quick tips will start working. Ext.ti ...
- CUDA学习笔记(二)——CUDA线程模型
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm5b.html 一个grid中的所有线程执行相同的内核函数,通过坐标进行区分.这些线程有两级的坐标,bl ...
- ExtJs 4: How To Add Grid Cell Tooltip
最近忙一个项目的时候需要实现鼠标移到grid的某一行上提示消息.花了半天时间才解决.在网上找很久终于有找到一个有用的.我的版本是extjs4. 效果如图 Ext.onReady(function () ...
- CUDA性能优化----warp深度解析
本文转自:http://blog.163.com/wujiaxing009@126/blog/static/71988399201701224540201/ 1.引言 CUDA性能优化----sp, ...
- Linux下Qt+CUDA调试并运行
Qt与CUDA相结合具体的操作主要修改qt项目中的配置文件pro.下面以测试的项目为例. 因为这是一个测试案例,代码很简单,下面将这几个文件的代码贴出来,方面后面对应pro文件和Makefile文件中 ...
随机推荐
- Tmux 速成教程:技巧和调整
本文转自:http://blog.jobbole.com/87584/ 简介 有些开发者经常要使用终端控制台工作,导致最终打开了过多的标签页.如果你也是他们当中的一员,或者你正在实践结对编程,那么我推 ...
- Spring Dispatcher-servlet.xml配置
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- JXJJOI2018_T1_market
题目描述 某天Lemon去超市买柠檬,他发现货架上有N个柠檬,每个柠檬都有一个重量Wi和价格Ci. Lemon身上只带了S元钱,因此他想要买一个价格不超过S的柠檬回家,另外,他希望他买的那个柠檬的性价 ...
- CSAPC08台湾邀请赛_T1_skyline
题目链接:CSAPC08台湾邀请赛_T1_skyline 题目描述 一座山的山稜线由许多片段的45度斜坡构成,每一个片段不是上坡就是下坡. / / * / / * / // / // / 在我 ...
- MyBatis之ResultMap的association和collection标签(一)
1.先说resultMap比较容易混淆的点, 2. Map结尾是映射,Type是类型 resultType 和restltMap restulyType: 1.对应的是java对象中的属性,大小写不 ...
- Python---6条件判断与循环
条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...
- 360若真入股HTC 到底是谁来拯救谁
到底是谁来拯救谁" title="360若真入股HTC 到底是谁来拯救谁"> 我总是持有一种观点,那就是拯救是相互的.就像老师拯救"堕落"学生, ...
- 仿豆瓣首页弹性滑动控件|Axlchen's blog
逛豆瓣的时候看到了这样的控件,觉得挺有趣,遂模仿之 先看看原版的效果 再看看模仿的效果 分析 控件结构分析 由于*ScrollView只能有一个child view,所以整个child view的结构 ...
- Nginx设置目录浏览并配置验证
Nginx默认是不允许进行列目录的,如果需要使某个目录可以进行浏览,可如下设置:如: 让/var/www/soft 这个目录在浏览器中完成列出. 一.设置目录浏览1.打开/usr/local/ngin ...
- 微软发布Microsoft Concept Graph和Microsoft Concept Tagging模型
Concept Graph和Microsoft Concept Tagging模型"> 当我们在讨论人工智能时,请注意,我们通常在讨论弱人工智能. 虽然我们现有的资源与之前可谓不同 ...