Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间

前文传送门:
「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」
「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」
图像加法
图像加法有两种方式,一种是通过 Numpy 直接对两个图像进行相加,另一种是通过 OpenCV 的 add() 函数进行相加。
不管使用哪种方法,相加的两个图像必须具有相同的深度和类型,简单理解就是图像的大小和类型必须一致。
Numpy 加法
Numpy 的运算方法是: img = img1 + img2 ,然后再对最终的运算结果取模。
- 当最终的像素值 <= 255 时,则运算结果直接为
img1 + img2。 - 当最终的像素值 > 255 时,则运算的结果需对 255 进行取模运算。
OpenCV 加法
OpenCV 的运算方式是直接调用 add() 函数进行的,这时的运算方式是饱和运算。
- 当最终的像素值 <= 255 时,则运算结果直接为
img1 + img2。 - 当最终的像素值 > 255 时,这时则是饱和运算,结果固定为 255 。
两种加法方式对应的示例如下:
import cv2 as cv
# 读取图像
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
test = img
# Numpy 加法
result1 = img + test
# OpenCV 加法
result2 = cv.add(img, test)
# 显示图像
cv.imshow("img", img)
cv.imshow("result1", result1)
cv.imshow("result2", result2)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:

可以看到,使用 Numpy 取模加法的图片整体更偏绿色,而使用 OpenCV 饱和运算的加法,整体颜色更偏白色。
图像融合
图像融合其实也是一种图像加法,但是它和图像加法不同的是对图像赋予不同的权重,可以使图像具有融合或者透明的感觉。
图像加法: img = img1 + img2
图像融合: img = img1 * alpha + img2 * beta + gamma
图像融合用到的函数为 addWeighted() 具体如下:
dst = cv.addWeighter(img1, alpha, img2, beta, gamma)
dst = img1 * alpha + img2 * beta + gamma
这里的 alpha 和 beta 都是系数,而 gamma 则是一个亮度调节量,不可省略。
下面这个示例中,我又找了一张下雨的图片,用这张图片和马里奥做一个图像融合的案例:
import cv2 as cv
# 读取图像
img1 = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
img2 = cv.imread("rain.jpg", cv.IMREAD_UNCHANGED)
# 图像融合
img = cv.addWeighted(img1, 0.4, img2, 0.6, 10)
# 显示图像
cv.imshow("img1", img1)
cv.imshow("img2", img2)
cv.imshow("img", img)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:

图像融合时需要注意的和上面一致,需要图像大小是相等的,上面的示例这两张图片都是像素为 560 * 310 且都为 RGB 的图片。
改变颜色空间
OpenCV 中有超过150种颜色空间转换方法。我们先介绍两种最常用的: BGR <-> 灰度 和 BGR <-> HSV 。
对于改变颜色空间,我们使用 cvtColor(input_image, flag) 函数,其中的 flag 为转换的类型。
一些常见的 flag 值:
# BGR 转 灰度
cv.COLOR_BGR2GRAY
# BGR 转 HSV
cv.COLOR_BGR2HSV
# BGR 转 RGB
cv.COLOR_BGR2RGB
# 灰度 转 BGR
cv.COLOR_GRAY2BGR
可以很清楚的看到, flag 的命名非常的通俗易懂,如果想要获取其他所有的标记,可以使用下面这段代码:
import cv2 as cv
flags = [i for i in dir(cv) if i.startswith('COLOR_')]
print(flags)
结果就不贴了,挺长的。
注意: HSV 的色相范围为 [0,179] ,饱和度范围为 [0,255] ,值范围为 [0,255] 。不同的软件使用不同的范围。因此,如果需要将 OpenCV 值和它们比较,则需要将这些范围标准化。
我们使用 cvtColor() 这个函数将马里奥转化成灰度图像,示例如下:
import cv2 as cv
# 读取图像
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
# 图像类型转换
result = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
# 图像展示
cv.imshow("img", img)
cv.imshow("result", result)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:

示例代码
如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。
参考
https://blog.csdn.net/Eastmount/article/details/82347501
Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间的更多相关文章
- Python 图像处理 OpenCV (5):图像的几何变换
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (6):图像的阈值处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (14):图像金字塔
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (15):图像轮廓
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (16):图像直方图
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- js 随机数生成器
title: js 随机数生成器 js 随机数生成器 js 随机数生成器 确定产生随机数的数目,最小值和最大值: 个数: 最小值: 最大值: 是否为唯一的随机数: 唯一 允许重复 点击生成产生随机数: ...
- nginx开启ssl并把http重定向到https的两种方式
1 简介 Nginx是一个非常强大和流行的高性能Web服务器.本文讲解Nginx如何整合https并将http重定向到https. https相关文章如下: (1)Springboot整合https原 ...
- SpringBoot内置生命周期事件详解 SpringBoot源码(十)
SpringBoot中文注释项目Github地址: https://github.com/yuanmabiji/spring-boot-2.1.0.RELEASE 本篇接 SpringBoot事件监听 ...
- Redis(四):独立功能的实现
发布与订阅 Redis 的发布与订阅功能有PUBLISH命令,SUBSCRIBE命令,PSUBSCRIBE命令,PUBSUB命令等组成. 客户端可以通过SUBSCRIBE命令订阅一个或多个频道,当其它 ...
- muduo网络库源码学习————线程本地单例类封装
muduo库中线程本地单例类封装代码是ThreadLocalSingleton.h 如下所示: //线程本地单例类封装 // Use of this source code is governed b ...
- 【Python】Django2.0集成Celery4.1详解
环境准备 Python3.6 pip install Django==2.0.1 pip install celery==4.1.0 pip install eventlet (加入协程支持) 安装e ...
- 自动化API之一 生成开源ERP Odoo App 的RestFul API
1.在服务器上安装开源ERP Odoo 安装步骤请自行百度,本文重点不在于指导安装,以下是安装后PC端效果. Odoo: 2.在Uniconnector平台上注册Odoo App 移动端应用 3.配置 ...
- Spring Boot入门系列(十三)如何实现事务
前面介绍了Spring Boot 中的整合Mybatis并实现增删改查.不清楚的朋友可以看看之前的文章:https://www.cnblogs.com/zhangweizhong/category/1 ...
- E. Count The Blocks
E. Count The Blocks 这是一个计数题,又把我卡自闭了...之前也碰到过类似的题目,这次居然还没有写出来,感觉自己还是太菜了,加油补题吧. 题目大意: 给你一个数字 \(n\),代表的 ...
- 时间日期相关类:Date类,DateFormat类&SimpleDateFormat类,Calendar类
日期相关类 1.Date类:日期时间类 A.构造方法 Date(): 根据当前系统时间创建日期对象 Date(Long time):根据传入的毫秒值时间创建日期对象 B.成员方法 Long get ...