Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间
前文传送门:
「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」
「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」
图像加法
图像加法有两种方式,一种是通过 Numpy 直接对两个图像进行相加,另一种是通过 OpenCV 的 add()
函数进行相加。
不管使用哪种方法,相加的两个图像必须具有相同的深度和类型,简单理解就是图像的大小和类型必须一致。
Numpy 加法
Numpy 的运算方法是: img = img1 + img2
,然后再对最终的运算结果取模。
- 当最终的像素值 <= 255 时,则运算结果直接为
img1 + img2
。 - 当最终的像素值 > 255 时,则运算的结果需对 255 进行取模运算。
OpenCV 加法
OpenCV 的运算方式是直接调用 add()
函数进行的,这时的运算方式是饱和运算。
- 当最终的像素值 <= 255 时,则运算结果直接为
img1 + img2
。 - 当最终的像素值 > 255 时,这时则是饱和运算,结果固定为 255 。
两种加法方式对应的示例如下:
import cv2 as cv
# 读取图像
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
test = img
# Numpy 加法
result1 = img + test
# OpenCV 加法
result2 = cv.add(img, test)
# 显示图像
cv.imshow("img", img)
cv.imshow("result1", result1)
cv.imshow("result2", result2)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:
可以看到,使用 Numpy 取模加法的图片整体更偏绿色,而使用 OpenCV 饱和运算的加法,整体颜色更偏白色。
图像融合
图像融合其实也是一种图像加法,但是它和图像加法不同的是对图像赋予不同的权重,可以使图像具有融合或者透明的感觉。
图像加法: img = img1 + img2
图像融合: img = img1 * alpha + img2 * beta + gamma
图像融合用到的函数为 addWeighted()
具体如下:
dst = cv.addWeighter(img1, alpha, img2, beta, gamma)
dst = img1 * alpha + img2 * beta + gamma
这里的 alpha
和 beta
都是系数,而 gamma
则是一个亮度调节量,不可省略。
下面这个示例中,我又找了一张下雨的图片,用这张图片和马里奥做一个图像融合的案例:
import cv2 as cv
# 读取图像
img1 = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
img2 = cv.imread("rain.jpg", cv.IMREAD_UNCHANGED)
# 图像融合
img = cv.addWeighted(img1, 0.4, img2, 0.6, 10)
# 显示图像
cv.imshow("img1", img1)
cv.imshow("img2", img2)
cv.imshow("img", img)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:
图像融合时需要注意的和上面一致,需要图像大小是相等的,上面的示例这两张图片都是像素为 560 * 310 且都为 RGB 的图片。
改变颜色空间
OpenCV 中有超过150种颜色空间转换方法。我们先介绍两种最常用的: BGR <-> 灰度 和 BGR <-> HSV 。
对于改变颜色空间,我们使用 cvtColor(input_image, flag)
函数,其中的 flag
为转换的类型。
一些常见的 flag 值:
# BGR 转 灰度
cv.COLOR_BGR2GRAY
# BGR 转 HSV
cv.COLOR_BGR2HSV
# BGR 转 RGB
cv.COLOR_BGR2RGB
# 灰度 转 BGR
cv.COLOR_GRAY2BGR
可以很清楚的看到, flag
的命名非常的通俗易懂,如果想要获取其他所有的标记,可以使用下面这段代码:
import cv2 as cv
flags = [i for i in dir(cv) if i.startswith('COLOR_')]
print(flags)
结果就不贴了,挺长的。
注意: HSV 的色相范围为 [0,179] ,饱和度范围为 [0,255] ,值范围为 [0,255] 。不同的软件使用不同的范围。因此,如果需要将 OpenCV 值和它们比较,则需要将这些范围标准化。
我们使用 cvtColor()
这个函数将马里奥转化成灰度图像,示例如下:
import cv2 as cv
# 读取图像
img = cv.imread("maliao.jpg", cv.IMREAD_UNCHANGED)
# 图像类型转换
result = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
# 图像展示
cv.imshow("img", img)
cv.imshow("result", result)
# 等待显示
cv.waitKey()
cv.destroyAllWindows()
结果如下:
示例代码
如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。
参考
https://blog.csdn.net/Eastmount/article/details/82347501
Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间的更多相关文章
- Python 图像处理 OpenCV (5):图像的几何变换
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (6):图像的阈值处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (14):图像金字塔
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (15):图像轮廓
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (16):图像直方图
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- Linux hostname主机名查看和设置
查询主机名: uname -n hostname [root@oldboy ~]# uname -n oldboy [root@oldboy ~]# hostname oldboy Linux操作系统 ...
- 【Linux常见命令】wc命令
wc - print newline, word, and byte counts for each file wc命令用于计算字数. 利用wc指令我们可以计算文件的Byte数.字数.或是列数,若不指 ...
- 地表最简单安装MySQL及配置的方法,没有之一
第一步下载我的压缩包 链接:https://pan.baidu.com/s/1EE40dU0j2U1d-bAfj7TeVA 提取码:n25c 复制这段内容后打开百度网盘手机App,操作更方便哦 第二步 ...
- 数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)
前提知识 1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)
- IO与反射机制总结
IO与反射机制全面总结 一.file类:属于java.io包中kkb 作用:操作文件或目录 file既可以表示文件,也可以表示目录,也可以表示盘符.利用他可以用来对文件进行操作. file中常用的构造 ...
- Redis 6.0 新特性-多线程连环13问!
Redis 6.0 来了 在全国一片祥和IT民工欢度五一节假日的时候,Redis 6.0不声不响地于5 月 2 日正式发布了,吓得我赶紧从床上爬起来,学无止境!学无止境! 对于6.0版本,Redis之 ...
- libevent(三)event_base
libevent能够处理三种事件: I/O.定时器.信号. event_base 统一管理所有事件. struct event_base { const struct eventop *evsel; ...
- 使用python实现模拟掷骰子数据分析
Data:2020/4/8 主题:模拟实现掷骰子数据分析 编译环境:pycharm 库:pygal 说明: code 1:创建一个掷骰子类对象,类方法获得掷骰子随机数1-6,默认6个面,模拟20次将结 ...
- flink系列-10、flink保证数据的一致性
本文摘自书籍<Flink基础教程> 一.一致性的三种级别 当在分布式系统中引入状态时,自然也引入了一致性问题.一致性实际上是“正确性级别”的另一种说法,即在成功处理故障并恢复之后得到的结果 ...
- LRU 的C# 实现
首先 先写点儿感悟吧: 本来计划是 晚上回家写的 后来发现还是没坚持的了 上午花了一个多小时 做了一下这个题目 应该还有提高的空间 的,这个题目是在力扣里面看到的 为什么看到这个题目 是因为 ...