描述:https://www.luogu.com.cn/problem/P3387

给定一个 nn 个点 mm 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次.


#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int maxn=;
int n,m,p[maxn],dp[maxn];
struct edge{
int u,to,nxt;
}d[maxn*];int head[maxn*],cnt=;
void add(int u,int v){
d[cnt].u=u,d[cnt].to=v,d[cnt].nxt=head[u],head[u]=cnt++;
}
int dfn[maxn],low[maxn],id,stack[maxn],vis[maxn],top,sd[maxn];//为tarjan准备
void tarjan(int now)
{
dfn[now]=low[now]=++id;
stack[++top]=now,vis[now]=;
for(int i=head[now];i;i=d[i].nxt)
{
int w=d[i].to;
if(!dfn[w])
tarjan(w),low[now]=min(low[now],low[w]);
else if(vis[w])
low[now]=min(low[now],low[w]);
}
if(low[now]==dfn[now])
{
int temp;
while(temp=stack[top--])
{
sd[temp]=now;
vis[temp]=;
if(temp==now) break;
p[now]+=p[temp];//集中在now这个超级点上
}
}
}
int indug[maxn];
vector<int>vec[maxn];
int tuopu()
{
queue<int>q;
for(int i=;i<=n;i++) if(!indug[i]&&sd[i]==i) q.push(i),dp[i]=p[i];
while(!q.empty())
{
int now=q.front();q.pop();
for(int i=;i<vec[now].size();i++)
{
int w=vec[now][i];
dp[w]=max(dp[w],dp[now]+p[w]);
if(--indug[w]==) q.push(w);
}
}
int ans=;
for(int i=;i<=n;i++) ans=max(ans,dp[i]);
return ans;
}
int main()
{
cin>>n>>m;
for(int i=;i<=n;i++) cin>>p[i];//读入点权
for(int i=;i<=m;i++)
{
int l,r;cin>>l>>r;
add(l,r);
}
for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i);
for(int i=;i<=m;i++)
{
int x=sd[d[i].u],y=sd[d[i].to];//看看两头是否是连通分量
if(x!=y)//不是就建边
vec[x].push_back(y),indug[y]++;
}
cout<<tuopu();
return ;
}

还有割点的

为什么(“low[v]>=dfn[u],此时u就是割点”)??

因为后面的点无法回到u点之前

u就把两个部分分开来了

#include <bits/stdc++.h>
using namespace std;
const int maxn=;
struct edge{
int nxt,to;
}d[maxn];
int n,m,id,cnt=,ttp;
int head[maxn],dfn[maxn],low[maxn],cut[maxn];
void add(int u,int v){
d[cnt].to=v,d[cnt].nxt=head[u],head[u]=cnt++;
}
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++id;
int child=;
for(int i=head[u];i;i=d[i].nxt)
{
int w=d[i].to;
if(!dfn[w])
{
tarjan(w,fa);
low[u]=min(low[u],low[w]);
if(low[w]>=dfn[u]&&u!=fa)//通过非非节点更新的low[w]
//因为在本连通块能回溯最多到dfn[u]
cut[u]=;
if(u==fa) child++;
}
low[u]=min(low[u],dfn[w]);
}
if(child>=&&u==fa) cut[u]=;
}
int main()
{
cin>>n>>m;
for(int i=;i<=m;i++)
{
int l,r;
cin>>l>>r;
add(l,r);add(r,l);
}
for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i,i);
int ans=;
for(int i=;i<=n;i++)
if(cut[i]) ans++;
cout<<ans<<endl;
for(int i=;i<=n;i++)
if(cut[i])
cout<<i<<" ";
return ;
}

Tarjan缩点割点(模板)的更多相关文章

  1. tarjan 缩点(模板)

    描述: 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 注:允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 思路: ...

  2. Tarjan缩点【模板】

    #include <algorithm> #include <cstdio> #include <map> using namespace std; ); map& ...

  3. Tarjan总结(缩点+割点(边)+双联通+LCA+相关模板)

    Tarjan求强连通分量 先来一波定义 强连通:有向图中A点可以到达B点,B点可以到达A点,则称为强连通 强连通分量:有向图的一个子图中,任意两个点可以相互到达,则称当前子图为图的强连通分量 强连通图 ...

  4. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  5. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  6. Tarjan的缩点&&割点概述

    What is Tarjan? Tarjan,是一种用来解决图的联通性的一种有效途径,它的一般俗称叫做:缩点.我们首先来设想一下: 如果我们有一个图,其中A,B,C构成一个环,那么我们在某种条件下,如 ...

  7. HDU4738 tarjan割边|割边、割点模板

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4738 坑点: 处理重边 图可能不连通,要输出0 若求出的结果是0,则要输出1,因为最少要派一个人 #inc ...

  8. Tarjan求强连通分量、求桥和割点模板

    Tarjan 求强连通分量模板.参考博客 #include<stdio.h> #include<stack> #include<algorithm> using n ...

  9. [模板]tarjan缩点+拓扑排序

    题目:给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 题目简述:先t ...

随机推荐

  1. AJ学IOS(36)UI之手势事件旋转_缩放_拖拽

    AJ分享,必须精品 效果 完成一个图片的捏合缩放,拖拽,旋转动作. 设计思路 拖拽: 首先是最简单的拖拽 //拖拽 -(void)panTest { UIPanGestureRecognizer *p ...

  2. JUC强大的辅助类讲解--->>>CountDownLatchDemo (减少计数)

    原理: CountDownLatch主要有两个方法,当一个或多个线程调用await方法时,这些线程会阻塞.其它线程调用countDown方法会将计数器减1(调用countDown方法的线程不会阻塞), ...

  3. python3-邮件发送-不同格式

    0x00 邮件格式 要发邮件,总要先了解邮件格式吧,这里指的是邮件的各个部分与python中SMTP所对应的一些必须的格式 0x01 简单发送邮件格式如下: import smtplib from e ...

  4. SUCTF 2019 Upload labs 2 踩坑记录

    SUCTF 2019 Upload labs 2 踩坑记录 题目地址 : https://github.com/team-su/SUCTF-2019/tree/master/Web/Upload La ...

  5. 高校战“疫”网络安全分享赛 Misc ez_mem&usb

    打开之后是一个流量包 用wireshark导出HTTP文件,有个upload,用一下binwalk,出来了一个镜像文件 用volatility搜一下,命令里有一个密码,看见了但是后来给忘了... 文件 ...

  6. jmeter 聚合报告参数解释

    label:每个请求的名称 样本:发送给服务器的请求数量 平均值:平均响应时间,默认情况下是单个 Request 的平均响应时间,当使用了 Transaction Controller 时,也可以以T ...

  7. Python - Python算法之冒泡算法的超简单实现

    [原创]转载请注明作者Johnthegreat和本文链接 冒泡排序在算法中算是最简单也最容易实现的,这里介绍一个非常简单实现的代码: def bubble_sort(ls): for first in ...

  8. 形象地展示信号与系统中的一些细节和原理——卷积、复数、傅里叶变换、拉普拉斯变换、零极图唯一确定因果LTI系统

    看懂本文需要读者具备一定的微积分基础.至少开始学信号与系统了本文主要讲解欧拉公式.傅里叶变换的频率轴的负半轴的意义.傅里叶变换的缺陷.为什么因果LTI系统可以被零极图几乎唯一确定等等容易被初学者忽略但 ...

  9. Liunx常用操作(二)-vim中删除命令

    VIM简介 Vim是一个类似于Vi的著名的功能强大.高度可定制的文本编辑器,在Vi的基础上改进和增加了很多特性.VIM是自由软件.Vim普遍被推崇为类Vi编辑器中最好的一个,事实上真正的劲敌来自Ema ...

  10. 关于“xxx”object is not callable的异常

    参考博文:https://blog.csdn.net/yitiaodashu/article/details/79016671 所谓callable对象是指一个后边可以加()的对象,比如函数, 所以这 ...