「AHOI2014/JSOI2014」拼图

传送门

看到 \(n \times m \le 10^5\) ,考虑根号分治。

对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \(tp, bt\),那么我们发现最终矩形一定是由所有满足从第 \(tp\) 行到第 \(bt\) 行都是白格子的矩形顺次连接,并且两端再各自接上一个最大的前缀和一个最大的后缀构成的。

这个我们可以 \(O(m)\) 地算。

总复杂度就是 \(O(n^2m)\),也就是一个根号级别的。

对于 \(n \ge m\) 的情况,我们肯定不能还去枚举上下边界,但是此时我们可以对于每一个白色的格子,都找一个它上面的最远的一个白格子来构成一组上下边界,然后套用第一问的计算方法就好了。

预处理是 \(O(nm)\) 的,总复杂度是 \(O(nm^2)\),还是一个根号级别的。

还有一个坑点就是再找前、后缀矩形时要避免重复使用一个矩阵,所以我们还得记录次大值。

参考代码:

#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T max(T a, T b) { return a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
} const int _ = 1e5 + 5; int s, n, m, l[_], r[_], lr[_], a[_], sum[_], up[_];
struct node { int first, second; } lmx, lmmx, rmx, rmmx; inline int id(int i, int j) { return i != 0 && j != 0 ? (j - 1) * n + i : 0; } inline int S(int x1, int y1, int x2, int y2) {
return sum[id(x2, y2)] - sum[id(x2, y1 - 1)] - sum[id(x1 - 1, y2)] + sum[id(x1 - 1, y1 - 1)];
} inline int calc(int tp, int bt) {
int res = 0;
for (rg int i = 1; i <= s; ++i)
for (rg int ss = 0, j = l[i]; j <= r[i]; ++j) {
if (S(tp, j, bt, j) != 0) ss = 0; else ++ss;
res = max(res, (bt - tp + 1) * ss);
}
int mid = 0;
lmx = lmmx = rmx = rmmx = (node) { 0, 0 };
for (rg int i = 1; i <= s; ++i) {
int ls = 0, rs = 0;
for (rg int j = l[i]; j <= r[i]; ++j) if (S(tp, j, bt, j) != 0) break ; else ++ls;
for (rg int j = r[i]; j >= l[i]; --j) if (S(tp, j, bt, j) != 0) break ; else ++rs;
if (ls == lr[i]) mid += lr[i];
else {
if (ls > lmx.first) lmmx = lmx, lmx = (node) { ls, i };
else if (ls > lmmx.first) lmmx = (node) { ls, i };
if (rs > rmx.first) rmmx = rmx, rmx = (node) { rs, i };
else if (rs > rmmx.first) rmmx = (node) { rs, i };
}
}
if (lmx.second != rmx.second)
res = max(res, (bt - tp + 1) * (lmx.first + mid + rmx.first));
else {
res = max(res, (bt - tp + 1) * (lmmx.first + mid + rmx.first));
res = max(res, (bt - tp + 1) * (rmmx.first + mid + lmx.first));
}
return res;
} inline void solve() {
read(s), read(n), m = 0;
for (rg int i = 1; i <= s; ++i) {
read(lr[i]), l[i] = m + 1, m += lr[i], r[i] = m;
for (rg int j = 1; j <= n; ++j)
for (rg int k = l[i]; k <= r[i]; ++k) scanf("%1d", a + id(j, k));
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
sum[id(i, j)] = sum[id(i - 1, j)] + sum[id(i, j - 1)] - sum[id(i - 1, j - 1)] + a[id(i, j)];
int ans = 0;
if (n < m) {
for (rg int i = 1; i <= n; ++i)
for (rg int j = i; j <= n; ++j) ans = max(ans, calc(i, j));
} else {
for (rg int j = 1; j <= m; ++j) {
for (rg int p = 0, i = 1; i <= n; ++i) {
if (a[id(i, j)] != 0) {
for (rg int k = p + 1; k < i; ++k) up[id(k, j)] = p; p = i;
}
for (rg int k = p + 1; k <= n; ++k) up[id(k, j)] = p;
}
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
if (a[id(i, j)] == 0) ans = max(ans, calc(up[id(i, j)] + 1, i));
}
printf("%d\n", ans);
} int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
int T; read(T);
while (T--) solve();
return 0;
}

「AHOI2014/JSOI2014」拼图的更多相关文章

  1. 「AHOI2014/JSOI2014」宅男计划

    「AHOI2014/JSOI2014」宅男计划 传送门 我们首先要发现一个性质:存货天数随买食物的次数的变化类似于单峰函数. 具体证明不会啊,好像是二分加三分来证明?但是没有找到明确的严格证明. 感性 ...

  2. 「AHOI2014/JSOI2014」奇怪的计算器

    「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发 ...

  3. 「AHOI2014/JSOI2014」骑士游戏

    「AHOI2014/JSOI2014」骑士游戏 传送门 考虑 \(\text{DP}\). 设 \(dp_i\) 表示灭种(雾)一只编号为 \(i\) 的怪物的代价. 那么转移显然是: \[dp_i ...

  4. 「AHOI2014/JSOI2014」支线剧情

    「AHOI2014/JSOI2014」支线剧情 传送门 上下界网络流. 以 \(1\) 号节点为源点 \(s\) ,新建一个汇点 \(t\),如果 \(u\) 能到 \(v\),那么连边 \(u \t ...

  5. 「JSOI2014」矩形并

    「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...

  6. 「JSOI2014」打兔子

    「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又 ...

  7. 「JSOI2014」电信网络

    「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include < ...

  8. 「JSOI2014」学生选课

    「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) ...

  9. 「JSOI2014」歌剧表演

    「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若 ...

随机推荐

  1. 如何开通linux机器的对外访问端口

    1.先查看是否已经开通 2.没有开通,去linux机器查看防火墙,确实没有开通 3.修改防火墙 vim /etc/sysconfig/iptables 4.重启防火墙之后重新查看已经可以看到8000端 ...

  2. 第二十一篇 Linux中的环境变量简单介绍

        环境变量之   PATH 定义解释器搜索用户执行命令的路径 获取PATH变量的值: echo $PATH /usr/local/bin:/usr/local/sbin:/usr/bin:/us ...

  3. 洛谷P1130红牌(简单DP)

    题目描述 某地临时居民想获得长期居住权就必须申请拿到红牌.获得红牌的过程是相当复杂 ,一共包括NNN个步骤.每一步骤都由政府的某个工作人员负责检查你所提交的材料是否符合条件.为了加快进程,每一步政府都 ...

  4. RHEL6-HA集群在VMware虚拟机环境安装配置文档

    (一)系统环境描述 本文档基于RHEL6u5 系统安装,配置为2节点高可用集群,节点为两台VMware虚拟机. 也可参考http://blog.51cto.com/ty1992/1325327 (二) ...

  5. idea项目更改git地址

    第一步:idea打开项目,菜单栏找VCS - Git - Remotes 点进去,弹出对话框,选中,点击编辑 弹出编辑框,更改地址,点击ok 弹出输入账号密码编辑框,输入自己的账号密码,点击确认 完成 ...

  6. win10下Ubuntu18.04安装的简单教程

    win10下Ubuntu18.04安装的简单教程      操作系统:windows    软件:Vmware15.      一.下载 Ubuntu18.04镜像   Ubuntu18.04镜像下载 ...

  7. Bugku-CTF加密篇之奇怪的密码(突然天上一道雷电 gndk€rlqhmtkwwp}z )

    奇怪的密码 突然天上一道雷电 gndk€rlqhmtkwwp}z  

  8. oracle关于sequence的个人理解

    oracle关于sequence的个人理解 1. sequence在多用户使用时的同步问题 个人感觉sequence是以连接(会话)为基础,类似于java中使用mysql的一个connection 网 ...

  9. 一个Log-Tan积分

    \[\Large\int_{0}^{\pi }\theta \ln\tan\frac{\theta }{2}\mathrm{d}\theta \] \(\Large\mathbf{Solution:} ...

  10. ZOJ - 3203 Light Bulb(三分)

    题意:灯离地面的高度为$H$,人的身高为$h$,灯离墙的距离为$D$,人站在不同位置,影子的长度不一样,求出影子的最长长度. 思路:设人离灯的距离为$x$,当人走到距离灯长度为$L$时,人在墙上的影子 ...