「AHOI2014/JSOI2014」拼图
「AHOI2014/JSOI2014」拼图
传送门
看到 \(n \times m \le 10^5\) ,考虑根号分治。
对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \(tp, bt\),那么我们发现最终矩形一定是由所有满足从第 \(tp\) 行到第 \(bt\) 行都是白格子的矩形顺次连接,并且两端再各自接上一个最大的前缀和一个最大的后缀构成的。
这个我们可以 \(O(m)\) 地算。
总复杂度就是 \(O(n^2m)\),也就是一个根号级别的。
对于 \(n \ge m\) 的情况,我们肯定不能还去枚举上下边界,但是此时我们可以对于每一个白色的格子,都找一个它上面的最远的一个白格子来构成一组上下边界,然后套用第一问的计算方法就好了。
预处理是 \(O(nm)\) 的,总复杂度是 \(O(nm^2)\),还是一个根号级别的。
还有一个坑点就是再找前、后缀矩形时要避免重复使用一个矩阵,所以我们还得记录次大值。
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline T max(T a, T b) { return a > b ? a : b; }
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 1e5 + 5;
int s, n, m, l[_], r[_], lr[_], a[_], sum[_], up[_];
struct node { int first, second; } lmx, lmmx, rmx, rmmx;
inline int id(int i, int j) { return i != 0 && j != 0 ? (j - 1) * n + i : 0; }
inline int S(int x1, int y1, int x2, int y2) {
return sum[id(x2, y2)] - sum[id(x2, y1 - 1)] - sum[id(x1 - 1, y2)] + sum[id(x1 - 1, y1 - 1)];
}
inline int calc(int tp, int bt) {
int res = 0;
for (rg int i = 1; i <= s; ++i)
for (rg int ss = 0, j = l[i]; j <= r[i]; ++j) {
if (S(tp, j, bt, j) != 0) ss = 0; else ++ss;
res = max(res, (bt - tp + 1) * ss);
}
int mid = 0;
lmx = lmmx = rmx = rmmx = (node) { 0, 0 };
for (rg int i = 1; i <= s; ++i) {
int ls = 0, rs = 0;
for (rg int j = l[i]; j <= r[i]; ++j) if (S(tp, j, bt, j) != 0) break ; else ++ls;
for (rg int j = r[i]; j >= l[i]; --j) if (S(tp, j, bt, j) != 0) break ; else ++rs;
if (ls == lr[i]) mid += lr[i];
else {
if (ls > lmx.first) lmmx = lmx, lmx = (node) { ls, i };
else if (ls > lmmx.first) lmmx = (node) { ls, i };
if (rs > rmx.first) rmmx = rmx, rmx = (node) { rs, i };
else if (rs > rmmx.first) rmmx = (node) { rs, i };
}
}
if (lmx.second != rmx.second)
res = max(res, (bt - tp + 1) * (lmx.first + mid + rmx.first));
else {
res = max(res, (bt - tp + 1) * (lmmx.first + mid + rmx.first));
res = max(res, (bt - tp + 1) * (rmmx.first + mid + lmx.first));
}
return res;
}
inline void solve() {
read(s), read(n), m = 0;
for (rg int i = 1; i <= s; ++i) {
read(lr[i]), l[i] = m + 1, m += lr[i], r[i] = m;
for (rg int j = 1; j <= n; ++j)
for (rg int k = l[i]; k <= r[i]; ++k) scanf("%1d", a + id(j, k));
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
sum[id(i, j)] = sum[id(i - 1, j)] + sum[id(i, j - 1)] - sum[id(i - 1, j - 1)] + a[id(i, j)];
int ans = 0;
if (n < m) {
for (rg int i = 1; i <= n; ++i)
for (rg int j = i; j <= n; ++j) ans = max(ans, calc(i, j));
} else {
for (rg int j = 1; j <= m; ++j) {
for (rg int p = 0, i = 1; i <= n; ++i) {
if (a[id(i, j)] != 0) {
for (rg int k = p + 1; k < i; ++k) up[id(k, j)] = p; p = i;
}
for (rg int k = p + 1; k <= n; ++k) up[id(k, j)] = p;
}
}
for (rg int i = 1; i <= n; ++i)
for (rg int j = 1; j <= m; ++j)
if (a[id(i, j)] == 0) ans = max(ans, calc(up[id(i, j)] + 1, i));
}
printf("%d\n", ans);
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
int T; read(T);
while (T--) solve();
return 0;
}
「AHOI2014/JSOI2014」拼图的更多相关文章
- 「AHOI2014/JSOI2014」宅男计划
「AHOI2014/JSOI2014」宅男计划 传送门 我们首先要发现一个性质:存货天数随买食物的次数的变化类似于单峰函数. 具体证明不会啊,好像是二分加三分来证明?但是没有找到明确的严格证明. 感性 ...
- 「AHOI2014/JSOI2014」奇怪的计算器
「AHOI2014/JSOI2014」奇怪的计算器 传送门 我拿到这题首先是懵b的,因为感觉没有任何性质... 后来经过同机房dalao的指导发现可以把所有的 \(X\) 放到一起排序,然后我们可以发 ...
- 「AHOI2014/JSOI2014」骑士游戏
「AHOI2014/JSOI2014」骑士游戏 传送门 考虑 \(\text{DP}\). 设 \(dp_i\) 表示灭种(雾)一只编号为 \(i\) 的怪物的代价. 那么转移显然是: \[dp_i ...
- 「AHOI2014/JSOI2014」支线剧情
「AHOI2014/JSOI2014」支线剧情 传送门 上下界网络流. 以 \(1\) 号节点为源点 \(s\) ,新建一个汇点 \(t\),如果 \(u\) 能到 \(v\),那么连边 \(u \t ...
- 「JSOI2014」矩形并
「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...
- 「JSOI2014」打兔子
「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又 ...
- 「JSOI2014」电信网络
「JSOI2014」电信网络 传送门 一个点选了就必须选若干个点,最大化点权之和,显然最大权闭合子图问题. 一个点向它范围内所有点连边,直接跑最大权闭合子图即可. 参考代码: #include < ...
- 「JSOI2014」学生选课
「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) ...
- 「JSOI2014」歌剧表演
「JSOI2014」歌剧表演 传送门 没想到吧我半夜切的 这道题应该算是 \(\text{JSOI2014}\) 里面比较简单的吧... 考虑用集合关系来表示分辨关系,具体地说就是我们把所有演员分成若 ...
随机推荐
- summernote 上传图片到图片服务器的解决方案(springboot 成功)
遇到的可以连接成功但是拒绝登录的问题 前提说一下,我自己在自己的服务器上配置了nginx的反向代理,所以请求的时候才会直接写的是我的ip地址,要配置nginx的话,可以看我的nginx的笔记 当代码感 ...
- js变量提升的坑
关于js变量提升 变量提升 在js函数内部是可以直接修改全局的变量的,个人感觉是不好的设计, 但是确实存在这个概念 原理: 先查看有没有函数变量bb 查看形参有没有bb 查看全局有没有bb 报错, 找 ...
- 设置背景图片的方式(优秀)--把图片放在一个div里面
优点: 此种情况可以保证图片充满整个windows,即使有扩展显示器也可以 <div id="formbackground" style="position:abs ...
- git上传时出现ERROR: Repository not found.的解决办法
今天在上传时出现错误,原因是之前更改了gitee上的个人空间地址,导致找不到.需要重新配置 https://gitee.com/help/articles/4114#article-header0
- Lenet 神经网络-实现篇(2)
Lenet 神经网络在 Mnist 数据集上的实现,主要分为三个部分:前向传播过程(mnist_lenet5_forward.py).反向传播过程(mnist_lenet5_backword.py). ...
- DataGridView绑定数据源后添加行
本文链接:https://blog.csdn.net/u012386475/article/details/88639799 在已经绑定数据源时,无法以Add的方式方式添加行,会报错 解决方法一: D ...
- 每天进步一点点------入门视频采集与处理(显示YUV数据)
做视频采集与处理,自然少不了要学会分析YUV数据.因为从采集的角度来说,一般的视频采集芯片输出的码流一般都是YUV数据流的形式,而从视频处理(例如H.264.MPEG视频编解码)的角度来说,也是在原始 ...
- scrapy下载 大文件处理
# 一个校花网图片下载的案例,也适合大文件处理,多个文件视频,音频处理 工程流程 -- scrapy startproject xx cd xx scrapy genspider hh www.xx. ...
- python练习:编写一个程序,检查3个变量x,y,z,输出其中最大的奇数。如果其中没有奇数,就输出一个消息进行说明。
python练习:编写一个程序,检查3个变量x,y,z,输出其中最大的奇数.如果其中没有奇数,就输出一个消息进行说明. 笔者是只使用条件语句实行的.(if-else) 重难点:先把三个数进行由小到大的 ...
- Java进阶学习(1)之类与对象(下)
类与对象 函数与调用 函数是通过对象来调用的 this 是成员函数的特殊的固有的本地变量 它表达了调用这个函数的那个对象 调用函数 通过 . 运算符,调用某个对象的函数 在成员函数内部直接调用自己(t ...