DTFT变换的性质

线性性质


\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})​
\]


\[
\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\
&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\
&=aX(e^{jw})+bY(e^{jw})
\end{aligned}
\]

时移性质


\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]

则\(x[n-n_0]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})
\]

频移性质


\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]

则\(e^{jw_0n}x[n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})
\]

时域反转


\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]

则\(x[-n]\)的傅里叶变换为
\[
\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})
\]

时域微分


\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]

由于
\[
x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw
\]

两边同时对\(n\)进行微分运算
\[
\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw
\]

所以
\[
\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})
\]

频域微分


\[
x[n]\xrightarrow{DTFT}X(e^{jw})
\]


\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]

两边同时对\(w\)进行微分
\[
\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}
\]

\[
\Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}
\]

所以
\[
nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}
\]

卷积性质


\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]

则二者卷积的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\
&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\
&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\
&=X(e^{jw})Y(e^{jw})
\end{aligned}
\]

调制定理


\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]

则\(x[n]y[n]\)的\(DTFT\)为
\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta
\end{aligned}
\]

Parseval定理


\[
x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})
\]


\[
\begin{aligned}
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\
&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\end{aligned}
\]

得到Parseval定理
\[
\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw
\]

如果\(y[n]=x[n]\),那么
\[
\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw
\]

即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。

08 DTFT变换的性质的更多相关文章

  1. 13 DFT变换的性质

    DFT变换的性质 线性性质 \[ \begin{aligned} y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+ ...

  2. 常用函数的DTFT变换对和z变换对

    直接从书上抓图的,为以后查表方便 1.DTFT 2.z变换对

  3. z变换的性质

    z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...

  4. 转载:一幅图弄清DFT与DTFT,DFS的关系

    转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...

  5. FS,FT,DFS,DTFT,DFT,FFT的联系和区别

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  6. FS,FT,DFT,DFS和DTFT的关系

    对于初学数字信号(Digital Signal Processing,DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. FS:时域上任意连续的周期信号可以分 ...

  7. FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  8. 16 Z变换

    Z变换 由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换. 定义 已知序列的\(DTFT\)为 \[ ...

  9. 07 DTFT

    DTFT 连续时间傅里叶变换(CTFT) 连续时间傅里叶变换的定义为: \[ X(j\Omega)=\int_{-\infty}^{\infty}x_a(t)e^{-j\Omega t}dt \] 其 ...

随机推荐

  1. 线性筛-mobius,强大O(n)

    首先,你要知道什么是莫比乌斯函数 然后,你要知道什么是积性函数 最后,你最好知道什么是线性筛 莫比乌斯反演 积性函数 线性筛,见上一篇 知道了,就可以愉快的写mobius函数了 由定义: μ(n)= ...

  2. Mysql sql语句技巧与优化

    一.常见sql技巧 1.正则表达式的使用 2.巧用RAND()提取随机行 mysql数据库中有一个随机函数rand()是获取一个0-1之间的数,利用这个函数和order by一起能够吧数据随机排序, ...

  3. 错误记录(一):VSCode

    VS Code莫名其妙突然变卡. 后来重新安装,下载以前版本,设置防止循环,都不太管用. 最后想添加VS Code目录到windows扫描白名单,但因为系统之前是英文不太好看懂,所以又调回了中文. 这 ...

  4. C# 将DataGridView中显示的数据导出到Excel(.xls和.xlsx格式)—NPOI

    前言 https://blog.csdn.net/IT_xiao_guang_guang/article/details/104217491  本地数据库表中有46785条数据,测试正常  初次运行程 ...

  5. 转载UUID.randomUUID()

    UUID.randomUUID()生成唯一识别码 原创 清晨-阳光zx 最后发布于2019-04-11 20:54:40 阅读数 3039 收藏 发布于2019-04-11 20:54:40 分类专栏 ...

  6. XSS常见攻击与防御

    XSS攻击全称跨站脚本攻击,是为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS,XSS是一种在web应用中的计算机安全漏洞,它允许恶意 ...

  7. eclipse中怎么导入git库下载下来的web项目

    总的看来是有两种方式: 方式一:可以对已经从版本库下载到本地的项目操作(Maven导入) 你可以通过公司提供的内部的版本库的网址登录版本库,之后在里面下载自己想要的那个版本的代码包,见下图 点击右侧的 ...

  8. 201771010135 杨蓉庆《面对对象程序设计(java)》第十八周学习总结

    1.实验目的与要求 (1) 综合掌握java基本程序结构: (2) 综合掌握java面向对象程序设计特点: (3) 综合掌握java GUI 程序设计结构: (4) 综合掌握java多线程编程模型: ...

  9. [QT] QT5.12 HTTPS请求 TLS initialization failed

    #前言 接触到了Qt的网络编程 然后尝试对一个http页面请求获取源码 是可以的 但是当对https界面发出请求的时候总是错误 TLC什么的初始化失败 百度也是没有结果 然后网上各种方法 比如说编译O ...

  10. MAC Address-Table Move Update Feature

    MAC Address-Table Move Update The MAC address-table move update feature allows the switch to provide ...