令 $B_{n}(x)$ 表示 $A_{n}(x)$ 在 % $x^{n}$ 下的逆
那么有 $B_{n}(x)=2B_{\frac{n}{2}}(x)-AB^{2}_{\frac{n}{2}}(x)$
递归一下即可
在 $len=1$ 时直接对常数项求逆即可
这里一定要注意!!!!!!!
取逆的时候是默认 % $x^{2n}$ 的,所以如果在多项式后面多加几个 0 的话逆是会变的!!!
因为模数改变了!!!!!!!
Code: 
#include <cstdio>
#include <string>
#include <algorithm>
#include <cstring>
#include <vector>
#define setIO(s) freopen(s".in","r",stdin)
typedef long long ll;
const int maxn=1000005;
const ll mod=998244353;
using namespace std;
ll qpow(ll base,ll k) {
ll tmp=1;
for(;k;k>>=1,base=base*base%mod)if(k&1) tmp=tmp*base%mod;
return tmp;
}
ll inv(ll a) { return qpow(a, mod-2); }
void NTT(ll *a,int len,int flag) {
for(int i=0,k=0;i<len;++i) {
if(i>k) swap(a[i],a[k]);
for(int j=len>>1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<len;mid<<=1) {
ll wn=qpow(3, (mod-1)/(mid<<1)),x,y;
if(flag==-1) wn=qpow(wn,mod-2);
for(int i=0;i<len;i+=(mid<<1)) {
ll w=1;
for(int j=0;j<mid;++j) {
x=a[i+j],y=w*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod, a[i+j+mid]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}
if(flag==-1) {
int re=qpow(len,mod-2);
for(int i=0;i<len;++i) a[i]=a[i]*re%mod;
}
}
ll A[maxn],B[maxn];
struct poly {
vector<ll>a;
int len;
poly(){}
void clear() {len=0; a.clear(); }
void rev() {reverse(a.begin(), a.end()); }
void push(int x) { a.push_back(x),++len; }
void getinv(poly &b,int n) {
if(n==1) {b.a.push_back(inv(a[0])), b.len=1; return; }
getinv(b,n>>1);
int t=n<<1,lim=min(len,n);
for(int i=0;i<lim;++i) A[i]=a[i];
for(int i=lim;i<t;++i) A[i]=0;
for(int i=0;i<b.len;++i) B[i]=b.a[i];
for(int i=b.len;i<t;++i) B[i]=0;
NTT(A,t,1), NTT(B,t,1);
for(int i=0;i<t;++i) A[i]=(2-A[i]*B[i]%mod+mod)*B[i]%mod;
NTT(A,t,-1);
for(int i=0;i<b.len;++i) b.a[i]=A[i];
for(int i=b.len;i<n;++i) b.a.push_back(A[i]);
b.len=n;
}
poly Inv() {
int n=1;
while(n<=len)n<<=1;
poly b;
b.clear();
getinv(b,n);
return b;
}
}po[4];
void checkinv() {
int n,len=1,x;
scanf("%d",&n);
po[0].clear();
for(int i=0;i<n;++i) scanf("%d",&x), po[0].push(x);
po[1]=po[0].Inv();
for(int i=0;i<n;++i) printf("%lld ",po[1].a[i]);
}
int main() {
// setIO("input");
checkinv();
return 0;
}

  

luoguP4238 【模板】多项式求逆 NTT的更多相关文章

  1. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  2. 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数

    出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...

  3. P4238 【模板】多项式求逆 ntt

    题意:求多项式的逆 题解:多项式最高次项叫度deg,假设我们对于多项式\(A(x)*B(x)\equiv 1\),已知A,求B 假设度为n-1,\(A(x)*B(x)\equiv 1(mod x^{\ ...

  4. Luogu4512 【模板】多项式除法(多项式求逆+NTT)

    http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...

  5. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  6. [模板][P4238]多项式求逆

    NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...

  7. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  8. luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

    手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...

  9. NTT+多项式求逆+多项式开方(BZOJ3625)

    定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...

随机推荐

  1. 复习MySQL①创建数据库及数据表

    • 创建数据库:create database 数据库名称; – 例:创建名为test的测试数据库 create database test; • 查看创建好的数据库:show create data ...

  2. kali 安装openvas

    因为Kali Linux上没有默认安装OpenVas,因此只好自己摸索着安装了一遍. 如果没有设置过源(/etc/apt/sources.list),设置如下: deb http://http.kal ...

  3. mmap,malloc分配随机内存

    随机数1G #cat malloc_rand_1g.c #include <stdio.h> /* printf, scanf, NULL */ #include <stdlib.h ...

  4. RE:ゼロから始める文化課生活

    觉得有必要在NOI之前开一篇学习内容记录. 至于为什么要取这个标题呢?也许并没有什么特殊的借口吧. 5.23 在LOJ上搬了三道原题给大家考了考,然后大家都在考试就我一个人在划水. SSerxhs 和 ...

  5. 原生js,时间日期简单应用。

    一.数码时钟,滚动切换时间. <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  6. Mysql提升大数据导入速度的绝妙方法

    一.对于Myisam类型的表,可以通过以下方式快速的导入大量的数据.      ALTER TABLE tblname DISABLE KEYS;     loading the data     A ...

  7. J - Borg Maze

    J - Borg Maze 思路:bfs+最小生成树. #include<queue> #include<cstdio> #include<cstring> #in ...

  8. Oracle 用户管理(一)

    1     创建用户     create user @username identified by @password     比如:create user aobama identified by ...

  9. COCOS学习笔记--Cocod2dx内存管理(三)-Coco2d-x内存执行原理

    通过上两篇博客.我们对Cocos引用计数和Ref类.PoolManager类以及AutoreleasePool类已有所了解,那么接下来就通过举栗子来进一步看看Coco2d-x内存执行原理是如何的. / ...

  10. UVA 10859 - Placing Lampposts 树形DP、取双优值

                              Placing Lampposts As a part of the mission ‘Beautification of Dhaka City’, ...