[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础
大纲
what is color?
- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.
Human encoding of color
Color Spaces
- linear space: RGB/CIE XYZ
- nolinear space: HSV
Use of color in computer vision:
- color histogram for indexing and retrieval
- skin detection
- nude people detection
- image segmentation and retrieval
- build apperance models for tracking
- ...
Linear Algebra Primer: Vectors and Matrix
1. 向量
列向量:$v \in R^{n*1} v = \begin{bmatrix} v_1 \\ v_2\\ \cdot \\ \cdot \\ \cdot \\ v_n \end{bmatrix}$
行向量:$v^T \in R^{1*n} v^T = [v_1 v_2 ... v_n]$ (T转置运算符)
向量使用:点的空间表示;表示数据,没有空间意义,但是计算仍然有意义
2. 矩阵
矩阵运算:addition, scaling
矩阵范数:
one norm:$||x||_1 = \sum_{i=1}^n |x_i| $
two norm:$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}
infinity norm: $||x||_inf = max |x_i|$
general P norm:||x||_p = (\sum_{i=1}^n x_i^p)^1/p$
matrix norm:||A||_F = \sqrt{\sum_{i=1}^m \sum_{j = 1}^n A_ij^2 = \sqrt{tr(A^TA)}$
矩阵的秩:
- $det(AB) = det(BA)$
- $det(A^-1) = \frac{1}{\det(A)}$
- $det(A^T) = det(A)$
- $det(A) = 0$ 当且仅当$A$是奇异的
矩阵的迹:对角元素的和
特殊矩阵:
- 单位矩阵(Identity Matrix):对角元素为0,其他元素为1
- 对角矩阵(diagonal matrix):非对角元素为0
- 对称矩阵(Symmetric Matrix):$A^T = A$
- 反对称矩阵(Skew-symmetric Matrix) $A^T = -A$
[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础的更多相关文章
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍
课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器
Background reading: Forsyth and Ponce, Computer Vision Chapter 7 Image sampling and quantization Typ ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习
深度学习 So far this week Edge detection RANSAC SIFT K-Means Linear classifier Mean-shift PCA/Eigenfaces ...
- [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 3 线性代数初步
向量和矩阵 什么是矩阵/向量? Vectors and matrix are just collections of ordered numbers that represent something: ...
- Computer Vision: Algorithms and ApplicationsのImage processing
实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...
- Ionic3学习笔记(四)修改返回按钮文字、颜色
本文为原创文章,转载请标明出处 目录 修改返回按钮文字 修改返回按钮颜色 1. 修改返回按钮文字 参考官网 Ionic API---Config 文档 可在 ./src/app/app.module. ...
- Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a ...
- Computer Vision Algorithm Implementations
Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...
- Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
随机推荐
- php多维数组的指定单个字段排序
多维数组如何根据指定键值?比如现在有数组结构如下: ,,,,,'subject' => 'math'), 1 => array('name' => '3班','avgScore'=& ...
- Adnroid_sdk安装代理
- python3连接Mairadb数据库
<span style="font-size:18px;">#本代码演示的是python3.3.5下连接Mairadb数据库</span> <span ...
- 【java项目实战】dom4j解析xml文件,连接Oracle数据库
简单介绍 dom4j是由dom4j.org出品的一个开源XML解析包.这句话太官方.我们还是看一下官方给出的解释.例如以下图: dom4j是一个易于使用的.开源的,用于解析XML,XPath和XSLT ...
- Linux网络驱动程序
Linux 的网络系统主要是基于 BSD UNIX 的套接字机制. 在系统与驱动程序之间定义了数据结构 sk_buff 进行传输数据.系统支持对发送数据和接收数据缓存,提供流控机制并提供对多协议的支持 ...
- Linux 下配置,安装Hadoop
1.从官网上下载hadoop-2.4.1.tar.gz,我的版本为hadoop-2.4.1,可在http://pan.baidu.com/s/1cLAKCQ 下载. 2.解压hadoop-2.4.1. ...
- [JavaEE]Spring配置文件总结
首先来看一个标准的Spring配置文件 applicationContext.xml <?xml version="1.0" encoding="UTF-8&quo ...
- 18. 4Sum[M]四数之和
题目 Given an array nums of n integers and an integer target, are there elements a, b, c and d in nums ...
- 阿里云主机ssh 免密码登录
云主机配置: 操作系统: CentOS 7.0 64位CPU: 1 核公网IP: 78.129.23.45用户名: root密码:bugaosuni 本地环境:我在VMware下安装的Ubuntu 1 ...
- LInux学习之常用命令ls
命令格式与目录处理命令ls 命令格式: 命令[-选项][参数] 例如: ls -la /etc 说明: 1)个别命令使用不遵循此格式 2)当多个选项时,可以写在一起 3)简化选项与完整选项 -a ...