CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1、http://codeforces.com/problemset/problem/149/D
2、题目大意
给一个给定括号序列,给该括号上色,上色有三个要求
1、只有三种上色方案,不上色,上红色,上蓝色
2、每对括号必须只能给其中的一个上色
3、相邻的两个不能上同色,可以都不上色
求0-len-1这一区间内有多少种上色方案,很明显的区间DP
dp[l][r][i][j]表示l-r区间两端颜色分别是i,j的方案数
0代表不上色,1代表上红色,2代表上蓝色
对于l-r区间,有3种情况
1、if(l+1==r) 说明就只有一对,那么dp[l][r][0][1]=1;
dp[l][r][1][0]=1;
dp[l][r][0][2]=1;
dp[l][r][2][0]=1;
2、if(l与r是配对的)
递归(l+1,r-1)
状态转移dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod; dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod; dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
3、if(l与r不配对)
dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
3、题目:
2 seconds
256 megabytes
standard input
standard output
Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.
You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")")
brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()" are not.
In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.
You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:
- Each bracket is either not colored any color, or is colored red, or is colored blue.
- For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
- No two neighboring colored brackets have the same color.
Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).
The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.
Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).
(())
12
(()())
40
()
4
Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.
The two ways of coloring shown below are incorrect.
4、AC代码:
- #include<stdio.h>
- #include<string.h>
- #include<algorithm>
- using namespace std;
- #define N 705
- #define mod 1000000007
- char s[N];
- int match[N];
- int tmp[N];
- long long dp[N][N][3][3];
//注意用longlong - void getmatch(int len)
- {
- int p=0;
- for(int i=0; i<len; i++)
- {
- if(s[i]=='(')
- tmp[p++]=i;
- else
- {
- match[i]=tmp[p-1];
- match[tmp[p-1]]=i;
- p--;
- }
- }
- }
- void dfs(int l,int r)
- {
- if(l+1==r)
- {
- dp[l][r][0][1]=1;
- dp[l][r][1][0]=1;
- dp[l][r][0][2]=1;
- dp[l][r][2][0]=1;
- return ;
- }
- if(match[l]==r)
- {
- dfs(l+1,r-1);
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- if(j!=1)
- dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
- if(i!=1)
- dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
- if(j!=2)
- dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
- if(i!=2)
- dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
- }
- }
- return ;
- }
- else
- {
- int p=match[l];
- dfs(l,p);
- dfs(p+1,r);
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- for(int k=0;k<3;k++)
- {
- for(int q=0;q<3;q++)
- {
- if(!((k==1 && q==1) || (k==2 && q==2)))
- dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
- }
- }
- }
- }
- }
- }
- int main()
- {
- while(scanf("%s",s)!=EOF)
- {
- int len=strlen(s);
- getmatch(len);
- memset(dp,0,sizeof(dp));
- dfs(0,len-1);
- long long ans=0;
- for(int i=0;i<3;i++)
- {
- for(int j=0;j<3;j++)
- {
- ans=(ans+dp[0][len-1][i][j])%mod;
- }
- }
- printf("%ld\n",ans);
- }
- return 0;
- }
CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)的更多相关文章
- CF 149D Coloring Brackets 区间dp ****
给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...
- codeforces 149D Coloring Brackets (区间DP + dfs)
题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...
- CodeForces 149D Coloring Brackets 区间DP
http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...
- codeforce 149D Coloring Brackets 区间DP
题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
- CodeForces 149D Coloring Brackets
Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...
- CodeForces 149D Coloring Brackets (区间DP)
题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...
- CF149D. Coloring Brackets[区间DP !]
题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...
- Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP
题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...
随机推荐
- [2-SAT] poj 3207 Ikki's Story IV - Panda's Trick
题目链接: id=3207">http://poj.org/problem? id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1 ...
- Cocos2d-x3.3beta0创建动画的3种方式
1.单独载入精灵对象 渲染效率低,浪费资源,不推荐用该方法.代码例如以下:注:代码仅仅需贴到HelloWorldScene.cpp中就可以. //First,单独渲染每个精灵帧 auto sprite ...
- 求int型数据在内存中存储时1的个数
1.求int型数据在内存中存储时1的个数 输入一个int型数据,计算出该int型数据在内存中存储时1的个数. 我们非常easy想到例如以下方法: #include <iostream> u ...
- Dvwa安装,配置(Linux)
文章演示使用系统:CenTOS7 一:搭建LAMP环境 使用XAMPP安装部署,下载地址:https://www.apachefriends.org/download.html 1.1:赋予账号对XA ...
- Email非正则表达式的判断
判断一个邮件是否合法,我们除了可以使用正则表达四以外还可以利用,Email地址的规律进行判断,那么一个合法的Email有哪些要求昵?具体如下: 必须有@与. @必须在第一个.之前 @与.不能连在一起 ...
- WPF全球化与本地化
当一个App需要推出多语言版本时,就需要使用到[全球化与本地化]服务. 原理及过程 资源文件中包含了所有的控件信息,通过导出这些控件信息,修改其对应的相关属性(比如TextBlock的Text属性)的 ...
- RoIPooling与RoIAlign的区别
一.RoIPooling与RoIAlign 1.1.RoIPooling 通过对Faster RCNN的学习我妈了解的RolPooling可以使生成的候选框region proposal映射产生固定大 ...
- 八叉树(Octree)Typescript 实现
Demo GitHub export class Octree { // 父&子树 private parent_node: any; private children_nodes: Octr ...
- jquery mobile动态加载数据后无法渲染
引自:http://blog.sina.com.cn/s/blog_025270e901016lst.html jquery mobile在动态添加html之后无法渲染控件,无法转换控件的办法! jq ...
- spring的HandlerMapping
handerlMapping意思是处理器映射,是把请求的url地址与方法进行映射,如SimpleUrlHandlerMapping.