1、http://codeforces.com/problemset/problem/149/D

2、题目大意

给一个给定括号序列,给该括号上色,上色有三个要求

1、只有三种上色方案,不上色,上红色,上蓝色

2、每对括号必须只能给其中的一个上色

3、相邻的两个不能上同色,可以都不上色

求0-len-1这一区间内有多少种上色方案,很明显的区间DP

dp[l][r][i][j]表示l-r区间两端颜色分别是i,j的方案数

0代表不上色,1代表上红色,2代表上蓝色

对于l-r区间,有3种情况

1、if(l+1==r) 说明就只有一对,那么dp[l][r][0][1]=1;

        dp[l][r][1][0]=1;

        dp[l][r][0][2]=1;

        dp[l][r][2][0]=1;

2、if(l与r是配对的)

递归(l+1,r-1)

状态转移dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod; dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;

dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod; dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;

3、if(l与r不配对)

dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;

3、题目:

D. Coloring Brackets
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")")
brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()"
are correct bracket sequences and such sequences as ")()" and "(()" are not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the
matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

  • Each bracket is either not colored any color, or is colored red, or is colored blue.
  • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
  • No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Sample test(s)
Input
(())
Output
12
Input
(()())
Output
40
Input
()
Output
4
Note

Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

 

The two ways of coloring shown below are incorrect.

 

4、AC代码:

  1. #include<stdio.h>
  2. #include<string.h>
  3. #include<algorithm>
  4. using namespace std;
  5. #define N 705
  6. #define mod 1000000007
  7. char s[N];
  8. int match[N];
  9. int tmp[N];
  10. long long dp[N][N][3][3];
     //注意用longlong
  11. void getmatch(int len)
  12. {
  13. int p=0;
  14. for(int i=0; i<len; i++)
  15. {
  16. if(s[i]=='(')
  17. tmp[p++]=i;
  18. else
  19. {
  20. match[i]=tmp[p-1];
  21. match[tmp[p-1]]=i;
  22. p--;
  23. }
  24. }
  25. }
  26. void dfs(int l,int r)
  27. {
  28. if(l+1==r)
  29. {
  30. dp[l][r][0][1]=1;
  31. dp[l][r][1][0]=1;
  32. dp[l][r][0][2]=1;
  33. dp[l][r][2][0]=1;
  34. return ;
  35. }
  36. if(match[l]==r)
  37. {
  38. dfs(l+1,r-1);
  39. for(int i=0;i<3;i++)
  40. {
  41. for(int j=0;j<3;j++)
  42. {
  43. if(j!=1)
  44. dp[l][r][0][1]=(dp[l][r][0][1]+dp[l+1][r-1][i][j])%mod;
  45. if(i!=1)
  46. dp[l][r][1][0]=(dp[l][r][1][0]+dp[l+1][r-1][i][j])%mod;
  47. if(j!=2)
  48. dp[l][r][0][2]=(dp[l][r][0][2]+dp[l+1][r-1][i][j])%mod;
  49. if(i!=2)
  50. dp[l][r][2][0]=(dp[l][r][2][0]+dp[l+1][r-1][i][j])%mod;
  51. }
  52. }
  53. return ;
  54. }
  55. else
  56. {
  57. int p=match[l];
  58. dfs(l,p);
  59. dfs(p+1,r);
  60. for(int i=0;i<3;i++)
  61. {
  62. for(int j=0;j<3;j++)
  63. {
  64. for(int k=0;k<3;k++)
  65. {
  66. for(int q=0;q<3;q++)
  67. {
  68. if(!((k==1 && q==1) || (k==2 && q==2)))
  69. dp[l][r][i][j]=(dp[l][r][i][j]+(dp[l][p][i][k]*dp[p+1][r][q][j])%mod)%mod;
  70. }
  71. }
  72. }
  73. }
  74. }
  75. }
  76. int main()
  77. {
  78. while(scanf("%s",s)!=EOF)
  79. {
  80. int len=strlen(s);
  81. getmatch(len);
  82. memset(dp,0,sizeof(dp));
  83. dfs(0,len-1);
  84. long long ans=0;
  85. for(int i=0;i<3;i++)
  86. {
  87. for(int j=0;j<3;j++)
  88. {
  89. ans=(ans+dp[0][len-1][i][j])%mod;
  90. }
  91. }
  92. printf("%ld\n",ans);
  93. }
  94. return 0;
  95. }

CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)的更多相关文章

  1. CF 149D Coloring Brackets 区间dp ****

    给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...

  2. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  3. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  4. codeforce 149D Coloring Brackets 区间DP

    题目链接:http://codeforces.com/problemset/problem/149/D 继续区间DP啊.... 思路: 定义dp[l][r][c1][c2]表示对于区间(l,r)来说, ...

  5. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  6. CodeForces 149D Coloring Brackets

    Coloring Brackets time limit per test: 2 seconds memory limit per test: 256 megabytes input: standar ...

  7. CodeForces 149D Coloring Brackets (区间DP)

    题意: 给一个合法的括号序列,仅含()这两种.现在要为每对括号中的其中一个括号上色,有两种可选:蓝or红.要求不能有两个同颜色的括号相邻,问有多少种染色的方法? 思路: 这题的模拟成分比较多吧?两种颜 ...

  8. CF149D. Coloring Brackets[区间DP !]

    题意:给括号匹配涂色,红色蓝色或不涂,要求见原题,求方案数 区间DP 用栈先处理匹配 f[i][j][0/1/2][0/1/2]表示i到ji涂色和j涂色的方案数 l和r匹配的话,转移到(l+1,r-1 ...

  9. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

随机推荐

  1. Vultr好server不敢独享

    Vultr是一家美国2014年成立的新公司.瞬间红遍世界,他是干什么的?他是serverVPS(Virtual Private Server)提供商,这个价格真实惊人的廉价5美金/月.折合人民币30元 ...

  2. SQL SERVER读书笔记:TempDB

    每次SQL SERVER启动的时候,会重新创建. 用于 0.临时表 1.排序 2.连接(merge join,hash join) 3.行版本控制 临时表与表变量的区别: 1)表变量是存储在内存中的, ...

  3. GNU TeXmacs 1.99.8 发布,所见即所得科学编辑器(看看老实的GUI)

    GNU TeXmacs 1.99.8 已发布,这是一个支持各种数学公式的所见即所得编辑器,可以用来编辑文本.图形.数学.交互内容,它的界面非常友好,并且内置高质量的排版引擎. 更新内容: bug 修复 ...

  4. luogu2761 软件补丁问题 状态压缩最短路径

    关键词:状态压缩 最短路径 想不出快速办法,就先考虑考虑暴力.枚举每一种错误分布的情况,然后通过可用的补丁转化为另多种情况,这些情况又转化为更多种情况……我们可以用图来表示这种关系! 状态压缩:每个错 ...

  5. c19---指针和字符串

    // // main.c // 指针和字符串 // // Created by xiaomage on 15/6/14. // Copyright (c) 2015年 xiaomage. All ri ...

  6. [CSharp] C#开源大全

    商业协作和项目管理平台-TeamLab 网络视频会议软件-VMukti 驰骋工作流程引擎-ccflow [免费]正则表达式测试工具-Regex-Tester Windows-Phone-7-SDK E ...

  7. Mvc NuGet 数据迁移

    网上有很多的ef  code first 的使用的方式,很乱,下面是我自己整理出来的,有什么不正确的地方还请指正,本人菜鸟一枚! 1.新建一个类库 =>引用 右击 管理NuGet程序包 添加En ...

  8. Centos7中 文件大小排序

    centos7中根据文件大小排序以及jenkins配置每周删除一次jobs日志信息 https://blog.csdn.net/u013066244/article/details/70232050

  9. MVP演化论

    本文是翻译MVP: Model-View-Presenter The Taligent Programming Model for C++ and Java(Mike Potel)文章的摘要.该文介绍 ...

  10. 整理Py小demo

    from email.mime.text import MIMEText # 第一个参数就是邮件正文,第二个参数是MIME的subtype, # 传入'plain'表示纯文本,最终的MIME就是'te ...