CUDA是一个基于NVIDIA GPU的并行计算平台和编程模型,通过调用CUDA提供的API,可以开发高性能的并行程序。CUDA安装好之后,会自动配置好VS编译环境,按照UCDA模板新建一个工程“Hello CUDA”:

建好之后,发现该工程下已经存在一个项目 kernel.cu。这个是CUDA编程的入门示例,实现的功能是两个整型数组相加,代码如下:

#include "cuda_runtime.h"
#include "device_launch_parameters.h" #include <stdio.h> cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size); __global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
} int main()
{
const int arraySize = 5;
const int a[arraySize] = { 1, 2, 3, 4, 5 };
const int b[arraySize] = { 10, 20, 30, 40, 50 };
int c[arraySize] = { 0 }; // Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
} printf("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n",
c[0], c[1], c[2], c[3], c[4]); // cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
} return 0;
} // Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus; // Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
} // Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
} cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
} cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
} // Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
} cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
} // Launch a kernel on the GPU with one thread for each element.
addKernel << <1, size >> > (dev_c, dev_a, dev_b); // Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
} // cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
} // Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
} Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b); return cudaStatus;
}

程序首先定义了一个函数addWithCuda,它是调用GPU运算的入口函数,返回类型是cudaError_t。

cudaError_t是一个枚举类型,可以作为几乎所有CUDA函数的返回类型,用来检测函数执行期间发生的不同类型的错误,一共有80多个错误类型,可以在driver_types.h头文件中查看每一个整型对应的错误类型,如果返回0,代表执行成功。

第二个函数addKernel在最前有一个修饰符“__global__”,这个修饰符告诉编译器,被修饰的函数应该编译为在GPU而不是在CPU上运行,所以这个函数将被交给编译设备代码的编译器——NVCC编译器来处理,其他普通的函数或语句将交给主机编译器处理。

这里“设备”的概念可以理解为GPU和其显存组成的运算单元,“主机”可以理解为CPU和系统内存组成的运算单元。在GPU上执行的函数称为核函数。

addKernel函数定义:

__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}

这个核函数里有一个陌生的threadIdx.x,表示的是thread在x方向上的索引号,理解这个之前得先了解一下GPU线程的层次结构:

CUDA中的线程(thread)是设备中并行运算结构中的最小单位,类似于主机中的线程的概念,thread可以以一维、二维、三维的形式组织在一起,threadIdx.x表示的是thread在x方向的索引号,还可能存在thread在y和z方向的索引号threadIdx.y和threadIdx.z。

一维、二维或三维的thread组成一个线程块(Block),一维、二维或三维的线程块(Block)组合成一个线程块网格(Grid),线程块网格(Grid)可以是一维或二维的。通过网格块(Grid)->线程块(Block)->线程(thread)的 顺序可以定位到每一个并且唯一的线程

回到程序中的addKernel函数上来,这个函数会被GPU上的多个线程同时执行一次,线程间彼此没有通信,相互独立。到底会有多少个线程来分别执行核函数,是在“<<<>>>”符号里定义的。“<<<>>>”表示运行时配置符号,在本程序中的定义是<<<1,size>>>,表示分配了一个线程块(Block),每个线程块有分配了size个线程“<<<>>>”中的
参数并不是传递给设备代码的参数,而是定义主机代码运行时如何启动设备代码。
以上定义的这些线程都是一个维度上的,可以通过thredaIdx.x来获取执行当前计算任务的线程的ID号。

cudaSetDevice函数用来设置要在哪个GPU上执行,如果只有一个GPU,设置为cudaSetDevice(0);

cudaMalloc函数用来为参与运算的数据分配显存空间,函数原型:cudaError_t cudaMalloc(void **p, size_t s);

cudaMemcpy函数用于主机内存和设备显存以及主机与主机之间,设备与设备之间相互拷贝数据,函数原型:

cudaError_t CUDARTAPI cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind);

第一个参数dst是目标数据地址,第二个参数src是源数据地址,第三个参数count是数据大小,第四个参数kind定义数据拷贝的类型,有如下几类枚举类型:

/**
* CUDA memory copy types
*/
enum __device_builtin__ cudaMemcpyKind
{
cudaMemcpyHostToHost = 0, /**< Host -> Host */
cudaMemcpyHostToDevice = 1, /**< Host -> Device */
cudaMemcpyDeviceToHost = 2, /**< Device -> Host */
cudaMemcpyDeviceToDevice = 3, /**< Device -> Device */
cudaMemcpyDefault = 4 /**< Direction of the transfer is inferred from the pointer values. Requires unified virtual addressing */
};

接下来在调用核函数时候添加了运行时配置符号“<<<>>>”,定义线程块和线程的数量,如<<<1,5>>>表示定义了一个线程块,每个线程块包含了5个线程。

cudaGetLastError函数用于返回最新的一个运行时调用错误,对于任何CUDA错误,都可以通过函数cudaGetErrorString函数来获取错误的详细信息。

cudaDeviceSynchronize函数提供了一个阻塞,用于等待所有的线程都执行完各自的计算任务,然后继续往下执行。

cudaFree函数用于释放申请的显存空间。

cudaDeviceReset函数用于释放所有申请的显存空间和重置设备状态;

第一个CUDA程序kernel.cu涉及的内容主要就是这些。CUDA的使用步骤如下:

  1. 主机代码执行
  2. 传输数据给GPU
  3. 确定Grid、Block大小
  4. 调用内核函数,GPU多线程运行程序
  5. 传输运算结果给CPU
  6. 继续主机代码执行

期间涉及到在设备上的一些显存空间申请、销毁等操作,从内存到显存上数据的相互拷贝是一个比较耗时的过程,应该尽量减少这种操作。

详解第一个CUDA程序kernel.cu的更多相关文章

  1. 【OpenGL】详解第一个OpenGL程序

    写在前面 OpenGL能做的事情太多了!很多程序也看起来很复杂.很多人感觉OpenGL晦涩难懂,原因大多是被OpenGL里面各种语句搞得头大,一会gen一下,一会bind一下,一会又active一下. ...

  2. (4)top详解 (每周一个linux命令系列)

    (4)top详解 (每周一个linux命令系列) linux命令 top详解 引言:今天的命令是用来看cpu信息的top top 我们先看man top top - display Linux pro ...

  3. (5)ps详解 (每周一个linux命令系列)

    (5)ps详解 (每周一个linux命令系列) linux命令 ps详解 引言:今天的命令是用来看进程状态的ps命令 ps 我们先看man ps ps - report a snapshot of t ...

  4. (2)free详解 (每周一个linux命令系列)

    (2)free详解 (每周一个linux命令系列) linux命令 free详解 引言:今天的命令是用来看内存的free free 换一个套路,我们先看man free中对free的描述: Displ ...

  5. (3)lscpu详解 (每周一个linux命令系列)

    (3)lscpu详解 (每周一个linux命令系列) linux命令 lscpu详解 引言:今天的命令是用来看cpu信息的lscpu lscpu 我们先看man lscpu display infor ...

  6. 详解k8s一个完整的监控方案(Heapster+Grafana+InfluxDB) - kubernetes

    1.浅析整个监控流程 heapster以k8s内置的cAdvisor作为数据源收集集群信息,并汇总出有价值的性能数据(Metrics):cpu.内存.网络流量等,然后将这些数据输出到外部存储,如Inf ...

  7. 详解封装微信小程序组件及小程序坑(附带解决方案)

    一.序 上一篇介绍了如何从零开发微信小程序,博客园审核变智障了,每次代码都不算篇幅,好好滴一篇原创,不到3分钟从首页移出来了.这篇介绍一下组件封装和我的踩坑历程. 二.封装微信小程序可复用组件 首先模 ...

  8. 我的第一个CUDA程序

    最近在学习CUDA框架,折腾了一个多月终于把CUDA安装完毕,现在终于跑通了自己的一个CUDA的Hello world程序,值得欣喜~ 首先,关于CUDA的初始化,代码和解释如下,这部分主要参考GXW ...

  9. QuartusII13.0使用教程详解(一个完整的工程建立)

    好久都没有发布自己的博客了,因为最近学校有比赛,从参加到现在都是一脸懵逼,幸亏有bingo大神的教程,让我慢慢走上了VIP之旅,bingo大神的无私奉献精神值得我们每一个业界人士学习,向bingo致敬 ...

随机推荐

  1. 11.2 Android显示系统框架_android源码禁用hwc和GPU

    2. 修改tiny4412_Android源码禁用hwc和gpu(厂家不会提供hwc和gpu的源代码,没有源代码就没法分析了,因此在这里禁用该功能并用软件库实现)最终源码: git clone htt ...

  2. swift开发网络篇—利用NSURLConnection GET请求和POST请求

    一.GET请求和POST请求简单说明 @IBOutlet weakvar userName:UITextField! @IBOutletweakvar userPwd:UITextField! @IB ...

  3. 一、Github博客搭建之jekyll安装

    注意:以下步骤是FQ后操作的,需要了解FQ的可以移步 -> 枫叶主机 一.安装jekyll需要Ruby-2.1.0以上版本,本人是mac pro系统版本10.12.5(macOS Sierra) ...

  4. tomcat自动URLDecode解码问题(+号变空格)

    最近项目中出现一个问题,就是前段调后端接口,参数带+号,传到后端后+号自动URLDecode成空格了. 1.问题排查 条件:tomcat配置server.xml有URIEncoding="U ...

  5. outlook vba 2

  6. 与Eclipse关于"Call Hierarchy"和"Find Reference"功能比较

    "Call Hierarchy"功能比较 Eclipse的"Call Hierarchy"可以查看一个Java方法或类成员变量的调用树(caller和calle ...

  7. hadoop容灾能力测试 分类: A1_HADOOP 2015-03-02 09:38 291人阅读 评论(0) 收藏

    实验简单来讲就是 1. put 一个600M文件,分散3个replica x 9个block 共18个blocks到4个datanode 2. 我关掉了两个datanode,使得大部分的block只在 ...

  8. html表单元素及表单元素详解

    原文 https://www.jianshu.com/p/b427daa8663d 大纲 1.认识表单 2.认识表单元素 3.表单元素的分类 4.表单元素——文本框 5.表单元素button 6.表单 ...

  9. python implementation for Qt's QDataStream(看一下QDataStream的结构)

    #!/usr/bin/env python # -*- coding: utf- -*- from __future__ import print_function from __future__ i ...

  10. winscp ppk无需密码登录(失败)

    http://blog.csdn.net/catoop/article/details/8284803 按上文将Linux下生成的密钥文件id_rsa通过puttygen生成对应的.ppk文件,用wi ...