题目链接

输入:一棵树,每个节点一个权值。

输出:包括1号节点在内的m个节点组成的连通分量的权值和的最大值

hdu1561和hiho1055一样,只是变换了下说法

/**********************************************/

计 dp(i,j) 为以i为根的子树选中j个点(包括i)时的最大权值和。则dp(1,m)即为所求。

方程:

{

dp[i][0] = 0;

dp[i][1] = value[i];

foreach child c of i

for j = m...2

for k = 1...j-1

dp[i][j] = max(dp[i][j],dp[i][j-k]+dp[c][k])

}

因为dp的核心就是记忆化搜索,所以自下向上处理整棵树,处理完一个节点就标记一下,下次用到这个节点的时候就不用再递归了。

这里我用getCnt()函数计算了一下以每个节点i为根的子树中节点的数目cnt(i),为的是缩小求dp(i,j)中j和k的上限,由m变为MIN(m,cnt(i)),应该不会提速多少

#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #define MAX(a,b) ((a)>=(b)?(a):(b))
#define MIN(a,b) ((a)<=(b)?(a):(b))
#define OO 0x0fffffff
using namespace std;
const int N = 111; struct Edge{
int to;
int next;
};
int eid = 0;
Edge edges[N*2];
int heads[N];
void addEdge(int a,int b){
edges[eid].to = a;
edges[eid].next = heads[b];
heads[b] = eid++; edges[eid].to = b;
edges[eid].next = heads[a];
heads[a] = eid++;
} int m,n;
int dp[N][N],cnt[N],visited[N]; void getCnt(int id){
visited[id] = 1;
for(int cur = heads[id];cur!=-1;cur=edges[cur].next){
int cid = edges[cur].to;
if(!visited[cid]) {
if(!cnt[cid]) getCnt(cid);
cnt[id] += cnt[cid];
}
}
cnt[id] += 1;
}
void traverse(int id){
visited[id] = 1;
for(int cur=heads[id];cur!=-1;cur=edges[cur].next){
int cid = edges[cur].to;
if(!visited[cid]){
if(!visited[cid]) traverse(cid);
for(int i=MIN(m,cnt[id]);i>=2;i--){
for(int j=1;j<MIN(i,cnt[cid]+1);j++){
dp[id][i]=MAX(dp[id][i],(dp[id][i-j]+dp[cid][j]));
}
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++) scanf("%d",dp[i]+1); int a,b;
memset(heads,-1,sizeof(heads));
for(int i=0;i<n-1;i++){
scanf("%d%d",&a,&b);
addEdge(a,b);
} memset(cnt,0,sizeof(cnt));
memset(visited,0,sizeof(visited));
getCnt(1); memset(visited,0,sizeof(visited));
traverse(1); printf("%d\n",dp[1][m]);
return 0;
}

hiho1055/hdu1561 - 树形dp转换成背包的更多相关文章

  1. hdu1561 树形dp,依赖背包

    多重背包是某个物品可以选择多次,要把对物品数的枚举放在对w枚举外面 分组背包是某组的物品只能选一个,要把对每组物品的枚举放在对w枚举内侧 依赖背包是多层的分组背包,利用树形结构建立依赖关系,每个结点都 ...

  2. 树形DP+(分组背包||二叉树,一般树,森林之间的转换)codevs 1378 选课

    codevs 1378 选课 时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond  题目描述 Description 学校实行学分制.每门的必修课都有固定的学分 ...

  3. CH5402 选课【树形DP】【背包】

    5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...

  4. hdu1561 树形dp + 背包

    #include<cstdio> #include<cstring> #include<iostream> #define INF 999999999 using ...

  5. hdu4003详解(树形dp+多组背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Find Metal Mineral Time Limit: 2000/1000 MS (Jav ...

  6. UVA Live Archive 4015 Cave (树形dp,分组背包)

    和Heroes Of Might And Magic 相似,题目的询问是dp的一个副产物. 距离是不好表示成状态的,但是可以换一个角度想,如果知道了从一个点向子树走k个结点的最短距离, 那么就可以回答 ...

  7. Codevs1378选课[树形DP|两种做法(多叉转二叉|树形DP+分组背包)---(▼皿▼#)----^___^]

    题目描述 Description 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修 ...

  8. HD1561The more, The Better(树形DP+有依赖背包)

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

随机推荐

  1. 实现两个jQuery的API(addClass、text)

    目的 给所有的div添加一个叫“red”的class,为方便看到代码的效果,设置如下css,在设置“red”成功时,文本会变红 .red{ color:red; } 将所有的div中的textCont ...

  2. Js基础知识(作用域、特殊函数---自调、回调、作为值的函数)

    15.作用域 概念: 规定变量或函数的可被访问的范围和生命周期 分类: 全局作用域 -就是指当前整个页面环境: 局部作用域(函数作用域) -就是指某个函数内部环境 l 变量的作用域 全局变量 - 定义 ...

  3. 一个javascript面试题解析

    ; function fn(){ console.log(this.length); } var obj = { length: , method: function (fn) { fn(); // ...

  4. The German Collegiate Programming Contest 2017

    B - Building 给一个m各面的多边形柱体,每一侧面有n*n个格子,现在对这些格子染色,看有多少种方式使得多面柱体无论如何旋转都不会与另一个一样. #include <bits/stdc ...

  5. getattibute 与 getparameter区别

    1.getAttribute是取得jsp中 用setAttribute设定的attribute 2.parameter得到的是string:attribute得到的是object  3.request ...

  6. 最近邻插值法&线性插值&双线性插值&三线性插值

    最近邻插值法nearest_neighbor是最简单的灰度值插值.也称作零阶插值,就是令变换后像素的灰度值等于距它最近的输入像素的灰度值. 造成的空间偏移误差为像素单位,计算简单,但不够精确.但当图像 ...

  7. jq——DOM文档处理

    内部插入:父子级关系 1 $(a).append($(b))把b插入到a里面(a里面的面后) $("div").append($("<p>段落</p&g ...

  8. Codeforces Round #506 (Div. 3) A-C

    CF比赛题解(简单题) 简单题是指自己在比赛期间做出来了 A. Many Equal Substrings 题意 给个字符串t,构造一个字符串s,使得s中t出现k次;s的长度最短 如t="c ...

  9. 使用面向对象技术创建高级 Web 应用程序

    作者: 出处: 使用面向对象技术创建高级 Web 应用程序 来源:开源中国社区 作者:oschina 最近,我面试了一位具有5年Web应用开发经验的软件开发人员.她有4年半的JavaScript编程经 ...

  10. 给iview组件select设置默认值

    1.首先,给select加一个v-model,如: <Select v-model="exam_name" > <Option v-for="(item ...